Search Results

Now showing 1 - 7 of 7
  • Item
    Photoactivatable Hsp47: A tool to control and regulate collagen secretion & assembly
    (Hoboken, NJ : Wiley, 2018) Khan, Essak; Sankaran, Shrikrishnan; Paez, Julieta; Muth, Christina; Han, Mitchell; Del Campo, Aránzazu
    Collagen is the most abundant structural protein in mammals and is crucial for the mechanical integrity of tissues. Hsp47, an endoplasmic reticulum resident collagen-specific chaperone, is involved in collagen biosynthesis and plays a fundamental role in the folding, stability, and intracellular transport of procollagen triple helices. This work reports on a photoactivatable derivative of Hsp47 that allows regulation of collagen biosynthesis within mammalian cells using light. Photoactivatable Hsp47 contains a non-natural light-responsive tyrosine (o-nitro benzyl tyrosine (ONBY)) at Tyr383 position of the protein sequence. This mutation renders Hsp47 inactive toward collagen binding. The inactive, photoactivatable protein is easily uptaken by cells within a few minutes of incubation, and accumulated at the endoplasmic reticulum via retrograde KDEL receptor-mediated uptake. Upon light exposure, the photoactivatable Hsp47 turns into functional Hsp47 in situ. The increased intracellular concentration of Hsp47 results in stimulated secretion of collagen. The ability to promote collagen synthesis on demand, with spatiotemporal resolution, and in diseased state cells is demonstrated in vitro. It is envisioned that photoactivatable Hsp47 allows unprecedented fundamental studies of collagen biosynthesis, matrix biology, and inspires new therapeutic concepts in biomedicine and tissue regeneration.
  • Item
    Surface structure influences contact killing of bacteria by copper
    (Hoboken, NJ : Wiley, 2014) Zeiger, Marco; Solioz, Marc; Edongué, Hervais; Arzt, Eduard; Schneider, Andreas S.
    Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered.
  • Item
    High glucose distinctively regulates Ca2+ influx in cytotoxic T lymphocytes upon target recognition and thapsigargin stimulation
    (Hoboken, NJ : Wiley, 2020) Zou, Huajiao; Yang, Wenjuan; Schwär, Gertrud; Zhao, Renping; Alansary, Dalia; Yin, Deling; Schwarz, Eva C.; Niemeyer, Barbara A.; Qu, Bin
    In CTLs: High glucose‐culture enhances thapsigargin‐induced SOCE but decreases target recognition‐induced Ca2+ influx. High glucose‐culture regulates expression of ORAIs and STIMs without affecting glucose uptake. More high glucose‐cultured CTLs are prone to necrosis after execution of killing.
  • Item
    A correlative analysis of gold nanoparticles internalized by A549 cells
    (Hoboken, NJ : Wiley, 2014) Böse, Katharina; Koch, Marcus; Cavelius, Christian; Kiemer, Alexandra K.; Kraegeloh, Annette
    Fluorescently labeled nanoparticles are widely used to investigate nanoparticle cell interactions by fluorescence microscopy. Owing to limited lateral and axial resolution, nanostructures (<100 nm) cannot be resolved by conventional light micro­scopy techniques. Especially after uptake into cells, a common fate of the fluorescence label and the particle core cannot be taken for granted. In this study, a correlative approach is presented to image fluorescently labeled gold nanoparticles inside whole cells by correlative light and electron microscopy (CLEM). This approach allows for detection of the fluorescently labeled particle shell as well as for the gold core in one sample. In this setup, A549 cells are exposed to 8 nm Atto 647N-labeled gold nanoparticles (3.3 × 109 particles mL−1, 0.02 μg Au mL−1) for 5 h and are subsequently imaged by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Eight fluorescence signals located at different intracellular positions are further analyzed by TEM. Five of the eight fluorescence spots are correlated with isolated or agglomerated gold nanoparticles. Three fluorescence signals could not be related to the presence of gold, indicating a loss of the particle shell.
  • Item
    Adhesion characteristics of PDMS surfaces during repeated pull-off force measurements
    (Hoboken, NJ : Wiley, 2010) Kroner, Elmar; Arzt, Eduard; Maboudian, Roya
    To mimic the adhesive effects of gecko toes, artificial surfaces have been manufactured recently using polydimethylsiloxanes (PDMS). However, the effects of repeated contacts on the adhesive properties remain largely unexplored. In this paper we report on the effect of repeated pull-off force measurements on the adhesion behavior of PDMS (polymer kit Sylgard 184, Dow Corning) tested with a borosilicate glass probe. A decrease in pull-off force with increase in number of test cycles is found until a plateau is reached. The initial value and the rate of change in pull-off force strongly depend on the sample preparation procedure, including curing time and cross-linking. It is proposed that the behavior is due to steady coverage of the probe with free oligomers. The results are crucial for developing reusable, durable, and residue-free bioinspired adhesives.
  • Item
    Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions
    (Hoboken, NJ : Wiley, 2020) Chen, Yaping; Wang, Ji; Li, Xiangling; Hu, Ning; Voelcker, Nicolas H.; Xie, Xi; Elnathan, Roey
    Engineered nano–bio cellular interfaces driven by 1D vertical nanostructures (1D‐VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell–VNS interfacial interactions are probed and assessed, highlighting the use of 1D‐VNS in immunomodulation, and intracellular delivery into immune cells—both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D‐VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell–VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard‐to‐transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS‐mediated intracellular delivery are discussed. By identifying up‐to‐date progress and fundamental challenges of current 1D‐VNS technology in immune‐cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D‐VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor‐T therapy.
  • Item
    A novel universal algorithm for filament network tracing and cytoskeleton analysis
    (Hoboken, NJ : Wiley, 2021) Flormann, Daniel A.D.; Schu, Moritz; Terriac, Emmanuel; Thalla, Divyendu; Kainka, Lucina; Koch, Marcus; Gad, Annica K.B.; Lautenschläger, Franziska
    The rapid development of advanced microscopy techniques over recent decades has significantly increased the quality of imaging and our understanding of subcellular structures, such as the organization of the filaments of the cytoskeleton using fluorescence and electron microscopy. However, these recent improvements in imaging techniques have not been matched by similar development of techniques for computational analysis of the images of filament networks that can now be obtained. Hence, for a wide range of applications, reliable computational analysis of such two-dimensional methods remains challenging. Here, we present a new algorithm for tracing of filament networks. This software can extract many important parameters from grayscale images of filament networks, including the mesh hole size, and filament length and connectivity (also known as Coordination Number). In addition, the method allows sub-networks to be distinguished in two-dimensional images using intensity thresholding. We show that the algorithm can be used to analyze images of cytoskeleton networks obtained using different advanced microscopy methods. We have thus developed a new improved method for computational analysis of two-dimensional images of filamentous networks that has wide applications for existing imaging techniques. The algorithm is available as open-source software.