Search Results

Now showing 1 - 4 of 4
  • Item
    Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets
    (Bristol : IOP Publ., 2015) Reuter, Stephan; Sousa, Joao Santos; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre
    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method's simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a 'best practice' guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.
  • Item
    Determination of Cr Density in the Active Phase of a High-current Vacuum Arcs
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2017) Gortschakow, S.; Khakpour, A.; Popov, S.; Franke, S.; Methling, R.; Uhrlandt, D.
    Melting and evaporation of the anode surface strongly influence the interruption capability of vacuum circuit breakers, because they lead to injection of atomic vapour into the inter-electrode gap. Determination of the vapour density and its dynamics with respect to different anode phenomena is therefore of great importance. Results of Cr density measurements in a high-current vacuum arc by using broadband absorption spectroscopy are presented. The vapour density of atomic Cr is determined after the formation of anode spots as well as close to the current zero. Cr I resonance lines at 425.43 nm have been used for the analysis. An AC current pulse with maximum value of 7 kA and a frequency of 100 Hz is applied to a vacuum arc between two cylindrical butt electrodes made of CuCr7525 with a diameter of 10 mm. The high-current anode modes are observed by means of high-speed camera imaging. The temporal evolution of the Cr ground state density is presented and discussed.
  • Item
    The multi-photon induced Fano effect
    ([London] : Nature Publishing Group UK, 2021) Litvinenko, K.L.; Le, Nguyen H.; Redlich, B.; Pidgeon, C.R.; Abrosimov, N.V.; Andreev, Y.; Huang, Zhiming; Murdin, B.N.
    The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application.
  • Item
    Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas
    (Bristol : IOP Publ., 2023) Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; Lü, X.; Röben, B.; Biermann, K.; Schrottke, L.; Grahn, H.T.; van Helden, J.H.
    This paper describes the first implementation of terahertz (THz) quantum cascade lasers for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz. Measurements were performed on a low-pressure capacitively coupled radio frequency oxygen discharge. The detection limit in this arrangement was found to be 2 × 10 13 cm−3, while the measurement accuracy was within 5%, as demonstrated by reference measurements of a well-defined ammonia transition. The results show that the presented method is well suited to measure atomic oxygen densities, and it closes the THz gap for quantitative atomic density measurements in harsh environments such as plasmas.