Search Results

Now showing 1 - 10 of 44
  • Item
    Sperm Micromotors for Cargo Delivery through Flowing Blood
    (Washington, DC : American Chemical Society, 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Maitz, Manfred F.; Werner, Carsten; Schmidt, Oliver G.
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
  • Item
    Medical Imaging of Microrobots: Toward In Vivo Applications
    (Washington, DC : American Chemical Society, 2020) Aziz, Azaam; Pane, Stefano; Iacovacci, Veronica; Koukourakis, Nektarios; Czarske, Jürgen; Menciassi, Arianna; Medina-Sánchez, Mariana; Schmidt, Oliver G
    Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
  • Item
    Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites
    (Weinheim : Wiley-VCH, 2017) Pawar, Shital Patangrao; Gandi, Mounika; Arief, Injamamul; Krause, Beate; Pötschke, Petra; Bose, Suryasarathi
    Herein, we report the development of soft polymeric composites containing multiwall carbon nanotubes (MWNTs, 1–3 wt%) and graphene derivatives doped with nickel ferrite nanoparticles (rGO@NF, 10 wt%) as lightweight microwave absorbers. The soft nanocomposites were designed using melt-mixed blends of varying compositions of PC (polycarbonate) and SAN (poly styrene acrylonitrile) by compartmentalized functional nanoparticles in one of the components of the blend (here PC). Maximum attenuation of the incoming electromagnetic (EM) radiation mainly through absorption was achieved. The hetero-dielectric media at microscopic length scale in the PC component provided large interfaces which facilitated multiple scattering thereby attenuating the incoming EM radiation. This strategy of positioning the functional nanoparticles in one of the components in the blends resulted in significantly enhanced shielding effectiveness (SE), at any given concentration of MWNTs, in contrast to PC based composites. This enhancement in SE was realized in the special morphology of the bicomponent PC/SAN=60/40 wt% blends where both the components are continuous. The enhanced SE in co-continuous blends is due to combined effect of enhanced electrical conductivity (more precisely due to interconnected network of the nanoparticles) and the presence of a hetero-dielectric media generating large scattering interfaces. For instance, the PC/SAN (60/40 wt%) co-continuous blend containing 3 wt% MWNTs and 10 wt% rGO@NF manifested in a total shielding effectiveness (SET) of −32.3 dB (i. e. more than 99.9 % attenuation of incoming EM radiation) mainly through absorption.
  • Item
    Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Ameli, A.; Arjmand, M.; Pötschke, Petra; Krause, Beate; Sundararaj, U.
    This study reports on nitrogen-doped carbon nanotube (N-CNT)/polymer nanocomposites exhibiting relatively high and frequency independent real permittivity (ϵ′) together with low dielectric loss (tan δ). N-CNTs were synthesized by chemical vapor deposition, and their nanocomposites were prepared by melt-mixing with polyvinylidene fluoride (PVDF). In the synthesis of N-CNTs, three catalysts of Co, Fe and Ni, and three temperatures of 650, 750 and 950 °C were employed. The morphology, aspect ratio, synthesis yield, remaining residue, nitrogen content, nitrogen bonding type, and powder conductivity of N-CNTs, and the morphology, polar crystalline phase, and broadband dielectric properties of N-CNT/PVDF nanocomposites were investigated. The results revealed that by proper selection of synthesis catalyst (Fe) and temperature (650 °C and 950 °C), nitrogen doping generated polarizable nanotubes via providing local polarization sites, and resulted in nanocomposites with favorable dielectric properties for charge storage applications at N-CNT loadings as low as 1.0 wt%. As a result, 3.5 wt% (N-CNT)Fe/950°C/PVDF nanocomposites exhibited an insulative behavior with ϵ' = 23.12 and tan δ = 0.05 at 1 kHz, a combination superior to that of PVDF, i.e., ϵ' = 8.4 and tan δ = 0.03 and to those of percolative nanocomposites, e.g., ϵ' = 71.20 and tan δ = 63.20 for 3.5 wt% (N-CNT)Fe/750°C/PVDF. Also, the relationships between the dielectric properties, N-CNT structure, and nanocomposite morphology were identified.
  • Item
    Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Arjmand, Mohammad; Chizari, Kambiz; Krause, Beate; Pötschke, Petra; Sundararaj, Uttandaraman
    Different catalysts including Co, Fe, and Ni were used to synthesize nitrogen-doped carbon nanotubes (N-CNTs) by chemical vapor deposition technique. Synthesized N-CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a small scale mixer at different concentrations ranging from 0.3 to 3.5 wt%, and then compression molded. The characterization techniques revealed significant differences in the synthesis yield and the morphological and electrical properties of both N-CNTs and nanocomposites depending on the catalyst type. Whereas Co and Fe resulted in yields comparable to industrial multiwalled CNTs, Ni was much less effective. The N-CNT aspect ratio was the highest for Co catalyst, followed by Ni and Fe, whereas nitrogen content was the highest for Ni. Raman spectroscopy revealed lowest defect number and highest N-CNT crystallinity for Fe catalyst. Characterization of N-CNT/PVDF nanocomposites showed better dispersion for N-CNTs based on Co and Fe as compared to Ni, and the following order of electrical conductivity and electromagnetic interference shielding (from high to low): Co > Fe > Ni. The superior electrical properties of (N-CNT)Co nanocomposites were ascribed to a combination of high synthesis yield, high aspect ratio, low nitrogen content and high crystallinity of N-CNTs combined with a good state of N-CNT dispersion.
  • Item
    A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing
    (New York, NY [u.a.] : Pergamon Press, 2011) Krause, Beate; Boldt, Regine; Pötschke, Petra
    A relatively simple method to determine the length distribution of carbon nanotubes (CNTs) before and after melt processing was developed. This involves the selection of a suitable solvent for dispersing pristine CNTs as well as to dissolve the matrix of melt mixed composites and the choice of an appropriate nanotube concentration. The length of suitably individualized CNTs was visualized using transmission electron microscopy and length distributions were measured using image analysis. Examples are shown for Baytubes® C150HP and Nanocyl™ NC7000 and their melt mixed composites with polycarbonate where the same procedure was applied to both, measuring the initial length distribution and the distribution after recovering from the composites. These results indicated a significant shortening after melt processing up to 30% of the initial length. © 2010 Elsevier Ltd. All rights reserved.
  • Item
    Characterization of the state of dispersion of carbon nanotubes in polymer nanocomposites
    (Weinheim : Wiley-VCH Verl., 2011) Buschhorn, Samuel T.; Wichmann, Malte H. G.; Sumfleth, Jan; Schulte, Karl; Pegel, Sven; Kasaliwal, Gaurav R.; Villmow, Tobias; Krause, Beate; Göldel, Andreas; Pötschke, Petra
    A practical overview of possibilities and limits to characterize the state of dispersion of carbon nanotubes (CNT) in polymer based nanocomposites is given. The most important and widely available methods are discussed with practical employment in mind. One focus is the quantitative characterization of the state of dispersion in solid samples using microscopy techniques such as optical microscopy or transmission electron microscopy. For dispersions of CNTs in aqueous media, solvents or monomers a sedimentation analysis is presented. This way dispersability and dispersion state of CNTs can be assessed. Indirect methods such as electrical conductivity measurements and rheological tests, dynamic differential scanning calorimetry and mechanical test are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    The force of MOFs: The potential of switchable metal-organic frameworks as solvent stimulated actuators
    (Cambridge : RSC, 2020) Freund, Pascal; Senkovska, Irena; Zheng, Bin; Bon, Volodymyr; Krause, Beate; Maurin, Guillaume; Kaskel, Stefan
    We evaluate experimentally the force exerted by flexible metal-organic frameworks through expansion for a representative model system, namely MIL-53(Al). The results obtained are compared with data collected from intrusion experiments while molecular simulations are performed to shed light on the re-opening of the guest-loaded structure. The critical impact of the transition stimulating medium on the magnitude of the expansion force is demonstrated.
  • Item
    A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions
    (Oxford : Elsevier Science, 2016) Mir, Seyed Mohammad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Krause, Beate; Pötschke, Petra; Taheri Qazvini, Nader
    Electrical conductive poly(methyl methacrylate) (PMMA) nanocomposites with low percolation threshold are very challenging to be prepared. Here, we show that the miscibility between poly(ethylene oxide) (PEO) as matrix for predispersions of multi-walled carbon nanotubes (MWCNTs) and PMMA represents an efficient approach to achieve very low electrical percolation threshold. PMMA/PEO-MWCNTs nanocomposites were prepared by a two-step solution casting method involving pre-mixing of MWCNTs with PEO and then mixing of PEO-MWCNTs with PMMA, resulting in a PMMA/PEO ratio of 80/20 wt%. The electrical percolation threshold (EPT) value was determined to be ~ 0.07 wt% which is significantly lower than most of the reported EPT values in the literature for PMMA/CNT composites. The very low electrical percolation threshold was attributed to the effectual role of PEO in self-assembly of secondary structures of nanotubes into an electrically conductive network. This was further confirmed by transmission electron microscopy and by comparing the obtained EPT value with the prediction of the excluded volume model in which statistical percolation threshold is defined based on uniform distribution of high-aspect ratio sticks in a matrix. Moreover, based on UV–Vis measurements and linear viscoelastic rheological measurements, optical and rheological percolation thresholds were obtained at nearly 0.01 wt% and 0.5 wt%, respectively.
  • Item
    Corona-Krise? - Welche Krise? Zum Umgang mit einer Pandemie
    (Freiburg, Br. : LJ-Verlag, 2022) Diebold, Steffen M.
    The corona pandemic poses major challenges for society. Many people lack (basic) scientific knowledge. They are skeptical and distrust fundamental research principles and concepts. Esotericism and superstition replace them access to reality. Not only facts are recently considered "alternative". Pseudo-scientific healing methods and occult procedures have long been presented to the public as equivalent alternatives to modern medicine, despite the lack of evidence of their effectiveness. Just as if reason or nonsense were just a question of personal taste, a different world view. Seconded by talk of an "exaggeratedly scientific world view", empiricism and logic were systematically defamed. As a result of this distorted picture, all kinds of conspiracy theories are now rampant. Spiritual healers, seers, shamans, charlatans, quacks, sectarians, and zealots of all stripes and persuasions are in demand. Diffuse pandemic management and miserable communication do the rest and contribute to the fact that infection control measures are often flatly rejected and vaccination rates can hardly be increased significantly.