Search Results

Now showing 1 - 10 of 28
  • Item
    Argon Humidification Exacerbates Antimicrobial and Anti-MRSA kINPen Plasma Activity
    (Basel : MDPI, 2023) Clemen, Ramona; Singer, Debora; Skowski, Henry; Bekeschus, Sander
    Gas plasma is a medical technology with antimicrobial properties. Its main mode of action is oxidative damage via reactive species production. The clinical efficacy of gas plasma-reduced bacterial burden has been shown to be hampered in some cases. Since the reactive species profile produced by gas plasma jets, such as the kINPen used in this study, are thought to determine antimicrobial efficacy, we screened an array of feed gas settings in different types of bacteria. Antimicrobial analysis was performed by single-cell analysis using flow cytometry. We identified humidified feed gas to mediate significantly greater toxicity compared to dry argon and many other gas plasma conditions. The results were confirmed by inhibition zone analysis on gas-plasma-treated microbial lawns grown on agar plates. Our results may have vital implications for clinical wound management and potentially enhance antimicrobial efficacy of medical gas plasma therapy in patient treatment.
  • Item
    Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells
    (Basel : MDPI, 2022) Clemen, Ramona; Arlt, Kevin; Miebach, Lea; von Woedtke, Thomas; Bekeschus, Sander
    In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.
  • Item
    Zebrafish larvae as a toxicity model in plasma medicine
    (Hoboken, NJ : Wiley Interscience, 2021) Gandhirajan, Rajesh K.; Endlich, Nicole; Bekeschus, Sander
    Plasma technology has emerged as a promising tool in medicine that, however, requires not only efficacy but also toxicological assessments. Traditional cell culture systems are fast and economical, but they lack in vivo relevance; however, rodent models are highly complex and necessitate extended facilities. Zebrafish larvae bridge this gap, and many larvae can be analyzed in well plates in a single run, giving results in 1–2 days. Using the kINPen, we found plasma exposure to reduce hedging rates and viability in a dose-dependent manner, accompanied with an increase in reactive oxygen species and a decrease of glutathione in plasma-treated fish. Modest growth alterations were also observed. Altogether, zebrafish larvae constitute a fast, reliable, and relevant model for testing the toxicity of plasma sources.
  • Item
    Argon Plasma Exposure Augments Costimulatory Ligands and Cytokine Release in Human Monocyte-Derived Dendritic Cells
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Bekeschus, Sander; Meyer, Dorothee; Arlt, Kevin; von Woedtke, Thomas; Miebach, Lea; Freund, Eric; Clemen, Ramona
    Cold physical plasma is a partially ionized gas expelling many reactive oxygen and nitrogen species (ROS/RNS). Several plasma devices have been licensed for medical use in dermatology, and recent experimental studies suggest their putative role in cancer treatment. In cancer therapies with an immunological dimension, successful antigen presentation and inflammation modulation is a key hallmark to elicit antitumor immunity. Dendritic cells (DCs) are critical for this task. However, the inflammatory consequences of DCs following plasma exposure are unknown. To this end, human monocyte-derived DCs (moDCs) were expanded from isolated human primary monocytes; exposed to plasma; and their metabolic activity, surface marker expression, and cytokine profiles were analyzed. As controls, hydrogen peroxide, hypochlorous acid, and peroxynitrite were used. Among all types of ROS/RNS-mediated treatments, plasma exposure exerted the most notable increase of activation markers at 24 h such as CD25, CD40, and CD83 known to be crucial for T cell costimulation. Moreover, the treatments increased interleukin (IL)-1α, IL-6, and IL-23. Altogether, this study suggests plasma treatment augmenting costimulatory ligand and cytokine expression in human moDCs, which might exert beneficial effects in the tumor microenvironment.
  • Item
    Cell cycle-related genes associate with sensitivity to hydrogen peroxide-induced toxicity
    (Amsterdam [u.a.] : Elsevier, 2022) Bekeschus, Sander; Liebelt, Grit; Menz, Jonas; Singer, Debora; Wende, Kristian; Schmidt, Anke
    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) are well-described agents in physiology and pathology. Chronic inflammation causes incessant H2O2 generation associated with disease occurrences such as diabetes, autoimmunity, and cancer. In cancer, conditioning of the tumor microenvironment, e.g., hypoxia and ROS generation, has been associated with disease outcomes and therapeutic efficacy. Many reports have investigated the roles of the action of H2O2 across many cell lines and disease models. The genes predisposing tumor cell lines to H2O2-mediated demise are less deciphered, however. To this end, we performed in-house transcriptional profiling of 35 cell lines and simultaneously investigated each cell line's H2O2 inhibitory concentration (IC25) based on metabolic activity. More than 100-fold differences were observed between the most resistant and sensitive cell lines. Correlation and gene ontology pathway analysis identified a rigid association with genes intertwined in cell cycle progression and proliferation, as such functional categories dominated the top ten significant processes. The ten most substantially correlating genes (Spearman r > 0.70 or < -0.70) were validated using qPCR, showing complete congruency with microarray analysis findings. Western blotting confirmed the correlation of cell cycle-related proteins negatively correlating with H2O2 IC25. Top genes related to ROS production or antioxidant defense were only modest in correlation (Spearman r > 0.40 or < -0.40). In conclusion, our in-house transcriptomic correlation analysis revealed a set of cell cycle-associated genes associated with a priori resistance or sensitivity to H2O2-induced cellular demise with the detailed and causative roles of individual genes remaining unclear.
  • Item
    Combined toxicity of indirubins with cold physical plasma in skin cancer cells in vitro
    (Bristol : IOP Publ., 2022) Berner, Julia; Bekeschus, Sander
    Cold physical plasma is a partially ionized gas that generates various components identified as potential anticancer compounds. Due to its topical application, cold plasmas are suitable, especially in dermatological applications. We, therefore, tested the cold plasma effects in skin cancer cells in vitro. An atmospheric pressure argon plasma jet was used as the plasma source. The plasma exposure alone reduced the metabolic activity and induced lethal effects in a treatment time-dependent fashion in both cell lines investigated. This was accompanied by executioner caspases 3 and 7, cleavage indicative of apoptosis and reduced cell migration and proliferation. Recent research also indicated roles of novel indirubin derivatives with potent anticancer effects. Three candidates were tested, and reduced metabolic activity and viability in a dose-dependent manner were found. Strikingly, one compound exerted notable synergistic toxicity when combined with plasma in skin cancer cells, which may be promising for future in vivo experiments.
  • Item
    Plasma treatment limits human melanoma spheroid growth and metastasis independent of the ambient gas composition
    (Basel : MDPI AG, 2020) Hasse, Sybille; Meder, Tita; Freund, Eric; Woedtke, Thomas von; Bekeschus, Sander
    Melanoma skin cancer is still a deadly disease despite recent advances in therapy. Previous studies have suggested medical plasma technology as a promising modality for melanoma treatment. However, the efficacy of plasmas operated under different ambient air conditions and the comparison of direct and indirect plasma treatments are mostly unexplored for this tumor entity. Moreover, exactly how plasma treatment affects melanoma metastasis has still not been explained. Using 3D tumor spheroid models and high-content imaging technology, we addressed these questions by utilizing one metastatic and one non-metastatic human melanoma cell line targeted with an argon plasma jet. Plasma treatment was toxic in both cell lines. Modulating the oxygen and nitrogen ambient air composition (100/0, 75/25, 50/50, 25/75, and 0/100) gave similar toxicity and reduced the spheroid growth for all conditions. This was the case for both direct and indirect treatments, with the former showing a treatment time-dependent response while the latter resulted in cytotoxicity with the longest treatment time investigated. Live-cell imaging of in-gel cultured spheroids indicated that plasma treatment did not enhance metastasis, and flow cytometry showed a significant modulation of S100A4 but not in any of the five other metastasis-related markers (β-catenin, E-cadherin, LEF1, SLUG, and ZEB1) investigated. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Physical plasma-treated skin cancer cells amplify tumor cytotoxicity of human natural killer (NK) cells
    (Basel : MDPI AG, 2020) Clemen, Ramona; Heirman, Pepijn; Lin, Abraham; Bogaerts, Annemie; Bekeschus, Sander
    Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Combined toxicity of gas plasma treatment and nanoparticles exposure in melanoma cells in vitro
    (Basel : MDPI, 2021) Bekeschus, Sander
    Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increas-ingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
  • Item
    Heat Shock Protein 27 Affects Myeloid Cell Activation and Interaction with Prostate Cancer Cells
    (Basel : MDPI, 2022) Singer, Debora; Ressel, Verena; Stope, Matthias B.; Bekeschus, Sander
    Heat shock proteins are cytoprotective molecules induced by environmental stresses. The small heat shock protein 27 (Hsp27) is highly expressed under oxidative stress conditions, mediating anti-oxidative effects and blocking apoptosis. Since medical gas plasma treatment subjects cancer cells to a multitude of reactive oxygen species (ROS), inducing apoptosis and immunomodulation, probable effects of Hsp27 should be investigated. To this end, we quantified the extracellular Hsp27 in two prostate cancer cell lines (LNCaP, PC-3) after gas plasma-induced oxidative stress, showing a significantly enhanced release. To investigate immunomodulatory effects, two myeloid cell lines (THP-1 and HL-60) were also exposed to Hsp27. Only negligible effects on viability, intracellular oxidative milieu, and secretion profiles of the myeloid cells were found when cultured alone. Interestingly, prostate cancer-myeloid cell co-cultures showed altered secretion profiles with a significant decrease in vascular endothelial growth factor (VEGF) release. Furthermore, the myeloid surface marker profiles were changed, indicating an enhanced differentiation in co-culture upon Hsp27 treatment. Finally, we investigated morphological changes, proliferation, and interaction with prostate cancer cells, and found significant alterations in the myeloid cells, supporting the tendency to differentiate. Collectively, our results suggest an ambiguous effect of Hsp27 on myeloid cells in the presence of prostate cancer cells which needs to be further investigated.