Search Results

Now showing 1 - 8 of 8
  • Item
    Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect
    (Amsterdam [u.a.] : Elsevier Science, 2021) Armakavicius, Nerijus; Kühne, Philipp; Eriksson, Jens; Bouhafs, Chamseddine; Stanishev, Vallery; Ivanov, Ivan G.; Yakimova, Rositsa; Zakharov, Alexei A.; Al-Temimy, Ameer; Coletti, Camilla; Schubert, Mathias; Darakchieva, Vanya
    In this work, we demonstrate the application of terahertz-optical Hall effect (THz-OHE) to determine directionally dependent free charge carrier properties of ambient-doped monolayer and quasi-free-standing-bilayer epitaxial graphene on 4H–SiC(0001). Directionally independent free hole mobility parameters are found for the monolayer graphene. In contrast, anisotropic hole mobility parameters with a lower mobility in direction perpendicular to the SiC surface steps and higher along the steps in quasi-free-standing-bilayer graphene are determined for the first time. A combination of THz-OHE, nanoscale microscopy and optical spectroscopy techniques are used to investigate the origin of the anisotropy. Different defect densities and different number of graphene layers on the step edges and terraces are ruled out as possible causes. Scattering mechanisms related to doping variations at the step edges and terraces as a result of different interaction with the substrate and environment are discussed and also excluded. It is suggested that the step edges introduce intrinsic scattering in quasi-free-standing-bilayer graphene, that is manifested as a result of the higher ratio between mean free path and average terrace width parameters. The suggested scenario allows to reconcile existing differences in the literature regarding the anisotropic electrical transport in epitaxial graphene. © 2020 Elsevier Ltd
  • Item
    Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene
    (College Park, MD : APS, 2023) Szczefanowicz, Bartosz; Kuwahara, Takuya; Filleter, Tobin; Klemenz, Andreas; Mayrhofer, Leonhard; Bennewitz, Roland; Moseler, Michael
    Epitaxial graphene on SiC(0001) exhibits superlow friction due to its weak out-of-plane interactions. Friction-force microscopy with silicon tips shows an abrupt increase of friction by one order of magnitude above a threshold normal force. Density-functional tight-binding simulations suggest that this wearless high-friction regime involves an intermittent sp3 rehybridization of graphene at contact pressure exceeding 10 GPa. The simultaneous formation of covalent bonds with the tip's silica surface and the underlying SiC interface layer establishes a third mechanism limiting the superlow friction on epitaxial graphene, in addition to dissipation in elastic instabilities and in wear processes.
  • Item
    A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles
    (Amsterdam [u.a.] : Elsevier Science, 2022) Mousavi, Seyed Rasoul; Estaji, Sara; Kiaei, Hediyeh; Mansourian-Tabaei, Mohammad; Nouranian, Sasan; Jafari, Seyed Hassan; Ruckdäschel, Holger; Arjmand, Mohammad; Khonakdar, Hossein Ali
    Epoxy (EP) resins exhibit desirable mechanical and thermal properties, low shrinkage during cuing, and high chemical resistance. Therefore, they are useful for various applications, such as coatings, adhesives, paints, etc. On the other hand, carbon nanotubes (CNT), graphene (Gr), and their derivatives have become reinforcements of choice for EP-based nanocomposites because of their extraordinary mechanical, thermal, and electrical properties. Herein, we provide an overview of the last decade's advances in research on improving the thermal and electrical conductivities of EP resin systems modified with CNT, Gr, their derivatives, and hybrids. We further report on the surface modification of these reinforcements as a means to improve the nanofiller dispersion in the EP resins, thereby enhancing the thermal and electrical conductivities of the resulting nanocomposites.
  • Item
    Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene
    (Weinheim : Wiley-VCH Verlag, 2020) Shi, Q.; Tokarska, K.; Ta, H.Q.; Yang, X.; Liu, Y.; Ullah, S.; Liu, L.; Trzebicka, B.; Bachmatiuk, A.; Sun, J.; Fu, L.; Liu, Z.; Rümmeli, M.H.
    Since the isolation of graphene and numerous demonstrations of its unique properties, the expectations for this material to be implemented in many future commercial applications have been enormous. However, to date, challenges still remain. One of the key challenges is the fabrication of graphene in a manner that satisfies processing requirements. While transfer of graphene can be used, this tends to damage or contaminate it, which degrades its performance. Hence, there is an important drive to grow graphene directly over a number of technologically important materials, viz., different substrate materials, so as to avoid the need for transfer. One of the more successful approaches to synthesis graphene is chemical vapor deposition (CVD), which is well established. Historically, transition metal substrates are used due to their catalytic properties. However, in recent years this has developed to include many nonmetal substrate systems. Moreover, both solid and molten substrate forms have also been demonstrated. In addition, the current trend to progress flexible devices has spurred interest in graphene growth directly over flexible materials surfaces. All these aspects are presented in this review which presents the developments in available substrates for graphene fabrication by CVD, with a focus primarily on large area graphene.
  • Item
    Single-atom catalytic growth of crystals using graphene as a case study
    (London : Nature Publishing Group, 2021) Yang, Xiaoqin; Liu, Yu; Ta, Huy Q.; Rezvani, Ehsan; Zhang, Yue; Zeng, Mengqi; Fu, Lei; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Rümmeli, Mark H.
    Anchored Single-atom catalysts have emerged as a cutting-edge research field holding tremendous appeal for applications in the fields of chemicals, energy and the environment. However, single-atom-catalysts for crystal growth is a nascent field. Of the few studies available, all of them are based on state-of-the-art in situ microscopy investigations and computational studies, and they all look at the growth of monolayer graphene from a single-atom catalyst. Despite the limited number of studies, they do, collectively, represent a new sub-field of single-atom catalysis, namely single-atom catalytic growth of crystalline solids. In this review, we examine them on substrate-supported and as freestanding graphene fabrication, as well as rolled-up graphene, viz., single-walled carbon nanotubes (SWCNT), grown from a single atom. We also briefly discuss the catalytic etching of graphene and SWCNT’s and conclude by outlining the future directions we envision this nascent field to take.
  • Item
    Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution
    (Cambridge : Royal Society of Chemistry, 2021) Sushmita, Kumari; Formanek, Petr; Fischer, Dieter; Pötschke, Petra; Madras, Giridhar; Bose, Suryasarathi
    The use of electronic devices and wireless networks is increasing rapidly, and electromagnetic (EM) pollution remediation remains a challenge. We employed a unique approach to fabricate two ultrathin (approx. 53 μm) multilayered assemblies to address this. By sequentially stacking thin films of polyvinylidene difluoride (PVDF) and polycarbonate (PC) nanocomposites and interfacially locking them with a mutually miscible polymer (PMMA, polymethyl methacrylate), materials with enhanced structural properties and electromagnetic interference (EMI) shielding performance can be designed. Utilizing reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) as a template, ferrite was grown on the surface to design two different nanohybrid structures (rGO–Fe3O4 and MoS2–Fe3O4). PVDF was composited with either rGO–Fe3O4 or MoS2–Fe3O4, and multiwall carbon nanotubes (CNTs) were dispersed in the PC component. As PC and PVDF are immiscible, their poor interface would result in inferior structural properties, which can be challenging in designing EMI shielding materials due to cyclic thermal fatigue. Hence, PMMA is sandwiched to interfacially stitch the components (PC and PVDF) and improve interfacial adhesion. This was confirmed using SEM/EDS and Raman mapping/imaging. The mechanical stability of the multilayered assemblies was characterized using a dynamic mechanical analyzer (DMA), and the storage modulus was found to be as high as 2767 MPa at 40 °C (@constant frequency and strain amplitude), for the multilayered film with rGO–Fe3O4 in PVDF, PMMA as a sandwich layer and CNTs in PC. A typical assembly of 9 multilayers (∼480 μm) with rGO–Fe3O4 in PVDF, and CNTs in PC, and interfacially stitched with PMMA gave rise to a high EMI shield effectiveness (SET) of −26.3 dB @ 26.5 GHz. This unique arrangement of a multilayered assembly suppressed EMI primarily by absorption.
  • Item
    Extended high-harmonic spectra through a cascade resonance in confined quantum systems
    (College Park, MD : APS, 2022) Zhang, Xiao; Zhu, Tao; Du, Hongchuan; Luo, Hong-Gang; van den Brink, Jeroen; Ray, Rajyavardhan
    The study of high-harmonic generation in confined quantum systems is vital to establishing a complete physical picture of harmonic generation from atoms and molecules to bulk solids. Based on a multilevel approach, we demonstrate how intraband resonances significantly influence the harmonic spectra via charge pumping to the higher subbands and thus redefine the cutoff laws. As a proof of principle, we consider the interaction of graphene nanoribbons, with zigzag as well as armchair terminations, and resonant fields polarized along the cross-ribbon direction. Here, this effect is particularly prominent due to many nearly equiseparated energy levels. In such a scenario, a cascade resonance effect can take place in high-harmonic generation when the field strength is above a critical threshold, which is completely different from the harmonic generation mechanism of atoms, molecules, and bulk solids. We further discuss the implications not only for other systems in a nanoribbon geometry, but also systems where only a few subbands (energy levels) meet this frequency-matching condition by considering a generalized multilevel Hamiltonian. Our study highlights that cascade resonance has a fundamentally distinct influence on the laws of harmonic generation, specifically the cutoff laws based on laser duration, field strength, and wavelength, thus unraveling additional insights in solid-state high-harmonic generation.
  • Item
    Nanoscale friction on MoS2/graphene heterostructures
    (Cambridge : RSC Publ., 2023) Liu, Zhao; Szczefanowicz, Bartosz; Lopes, J. Marcelo J.; Gan, Ziyang; George, Antony; Turchanin, Andrey; Bennewitz, Roland
    Stacked hetero-structures of two-dimensional materials allow for a design of interactions with corresponding electronic and mechanical properties. We report structure, work function, and frictional properties of 1 to 4 layers of MoS2 grown by chemical vapor deposition on epitaxial graphene on SiC(0001). Experiments were performed by atomic force microscopy in ultra-high vacuum. Friction is dominated by adhesion which is mediated by a deformation of the layers to adapt the shape of the tip apex. Friction decreases with increasing number of MoS2 layers as the bending rigidity leads to less deformation. The dependence of friction on applied load and bias voltage can be attributed to variations in the atomic potential corrugation of the interface, which is enhanced by both load and applied bias. Minimal friction is obtained when work function differences are compensated.