Search Results

Now showing 1 - 7 of 7
  • Item
    Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer
    (Cambridge : RSC, 2021) Zalibera, Michal; Ziegs, Frank; Schiemenz, Sandra; Dubrovin, Vasilii; Lubitz, Wolfgang; Savitsky, Anton; Deng, Shihu H.M.; Wang, Xue-Bin; Advoshenko, Stanislav M.; Popov, Alexey A.
    We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.
  • Item
    Chiral Spin Liquid Ground State in YBaCo3FeO7
    (College Park, Md. : APS, 2022) Schweika, W.; Valldor, M.; Reim, J.D.; Rößler, U.K.
    A chiral spin liquid state is discovered in the highly frustrated, noncentrosymmetric swedenborgite compound YBaCo3FeO7, a layered kagome system of hexagonal symmetry, by advanced polarized neutron scattering from a single domain crystalline sample. The observed diffuse magnetic neutron scattering has an antisymmetric property that relates to its specific chirality, which consists of three cycloidal waves perpendicular to the c axis, forming an entity of cylindrical symmetry. Chirality and symmetry agree with relevant antisymmetric exchanges arising from broken spatial parity. Applying a Fourier analysis to the chiral interference pattern, with distinction between kagome sites and the connecting trigonal interlayer sites of threefold symmetry, the chiral spin correlation function is determined. Characteristic chiral waves originate from the trigonal sites and extend over several periods in the kagome planes. The chiral spin liquid is remarkably stable at low temperatures despite strong antiferromagnetic spin exchange. The observation raises a challenge, since the commonly accepted ground states in condensed matter either have crystalline long-range order or form a quantum liquid. We show that, within the classical theory of magnetic order, a disordered ground state may arise from chirality. The present scenario, with antisymmetric exchange acting as a frustrating gauge background that stabilizes local spin lumps, is similar to the avoided phase transition in coupled gauge and matter fields for subnuclear particles.
  • Item
    Robust metastable skyrmions with tunable size in the chiral magnet FePtMo3 N
    (Woodbury, NY : Inst., 2020) Sukhanov, A.S.; Heinemann, A.; Kautzsch, L.; Bocarsly, J.D.; Wilson, S.D.; Felser, C.; Inosov, D.S.
    The synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The β-Mn-type compound FePtMo3N is one such novel material that belongs to the chiral space group P4132, where the antisymmetric Dzyaloshinskii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo3N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222 K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at ∼13 mT at temperatures just below TC. Our key observation is that the skyrmion state in FePtMo3N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo3N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210 nm. This offers different prospects in the control of topological properties of chiral magnets. © 2020 authors. Published by the American Physical Society.
  • Item
    All-optical Stückelberg spectroscopy of strongly driven Rydberg states
    (College Park, MD : APS, 2022) Bengs, Ulrich; Patchkovskii, Serguei; Ivanov, Misha; Zhavoronkov, Nickolai
    The AC Stark shift of electronic levels is ubiquitous in the interaction of intense light fields with atoms and molecules. As the light intensity changes on the rising and falling edges of a femtosecond laser pulse, it shifts the Rydberg states in and out of multiphoton resonances with the ground state. The two resonant pathways for transient excitation arising at the leading and the trailing edges of the pulse generate Young's type interference, generally referred to as the Stückelberg oscillations. Here we report the observation of the Stückelberg oscillations in the intensity of the coherent free-induction decay following resonant multiphoton excitation. Moreover, combining the experimental results with accurate numerical simulations and a simple model, we use the Stückelberg oscillations to recover the population dynamics of strongly driven Rydberg states inside the laser pulse by all-optical measurements after the end of the pulse. We demonstrate the potential of this spectroscopy to characterize lifetimes of Rydberg states dressed by laser fields with strengths far exceeding the Coulomb field between the Rydberg electron and the core.
  • Item
    Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C82
    (Cambridge : RSC, 2020) Krylov, Denis; Velkos, Georgios; Chen, Chia-Hsiang; Büchner, Bernd; Kostanyan, Aram; Greber, Thomas; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in Cs and C3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the Cs isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in Cs and C3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity. © the Partner Organisations.
  • Item
    Evidence of the dominant production mechanism of ammonia in a hydrogen plasma with parts per million of nitrogen
    ([Melville, NY] : American Institute of Physics, 2021) Ellis, J.; Köpp, D.; Lang, N.; van Helden, J. H.
    Absolute ground state atomic hydrogen densities were measured, by the utilization of two-photon absorption laser induced fluorescence, in a low-pressure electron cyclotron resonance plasma as a function of nitrogen admixtures - 0 to 5000 ppm. At nitrogen admixtures of 1500 ppm and higher, the spectral distribution of the fluorescence changes from a single Gaussian to a double Gaussian distribution; this is due to a separate, nascent contribution arising from the photolysis of an ammonia molecule. At nitrogen admixtures of 5000 ppm, the nascent contribution becomes the dominant contribution at all investigated pressures. Thermal loading experiments were conducted by heating the chamber walls to different temperatures; this showed a decrease in the nascent contributions with increasing temperature. This is explained by considering how the temperature influences recombination coefficients, and from which, it can be stated that the Langmuir-Hinshelwood recombination mechanism is dominant over the Eley-Rideal mechanism.
  • Item
    Thermalization by a synthetic horizon
    (College Park, MD : APS, 2022) Mertens, Lotte; Moghaddam, Ali G.; Chernyavsky, Dmitry; Morice, Corentin; van den Brink, Jeroen; van Wezel, Jasper
    Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we establish the emergence of a thermal state accompanying the formation of a synthetic horizon. The resulting temperature for long chains is shown to be identical to the corresponding Unruh temperature, provided that the postquench Hamiltonian matches the entanglement Hamiltonian of the prequench system. Based on detailed analysis of the outgoing radiation we formulate the conditions required for the synthetic horizon to behave as a purely thermal source, paving a way to explore this interplay of quantum-mechanical and gravitational aspects experimentally.