Search Results

Now showing 1 - 10 of 13
  • Item
    Towards low-temperature processing of efficient γ-CsPbI3 perovskite solar cells
    (London [u.a.] : RSC, 2023) Zhang, Zongbao; Ji, Ran; Hofstetter, Yvonne J.; Deconinck, Marielle; Brunner, Julius; Li, Yanxiu; An, Qingzhi; Vaynzof, Yana
    Inorganic cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (∼1.73 eV), well-suited for tandem device applications. However, achieving high-performance photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method for the fabrication of high-efficiency and stable γ-CsPbI3 PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of γ-CsPbI3, while excess Pb(OAc)2 can further stabilize the γ-phase of CsPbI3 perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI3 films fabricated by the new method. By optimizing the hole transport layer of CsPbI3 inverted architecture solar cells, we demonstrate efficiencies of up to 16.6%, surpassing previous reports examining γ-CsPbI3 in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and under dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 in stabilizing γ-CsPbI3 PSCs.
  • Item
    Probability of success studies for geothermal projects in clastic reservoirs: From subsurface data to geological risk analysis
    (Amsterdam [u.a.] : Elsevier Science, 2020) Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang
    In the realisation of a geothermal project, an important step is the quantification of the geological risk of a well not achieving the economically necessary cut-off values with respect to temperature and flowrate/drawdown. In this paper, we present a new method for calculating this risk via a probability of success study by using all available types of hydraulic data, including porosity values derived from core samples or borehole logs. This method has been developed for geothermal projects in fluvial sandstones of the North German Basin but can be applied to any clastic, not fracture-dominated reservoir worldwide. © 2019 The Authors
  • Item
    Topological boundaries between helical domains as a nucleation source of skyrmions in the bulk cubic helimagnet Cu2OSeO3
    (College Park, MD : APS, 2022) Leonov, A.O.; Pappas, C.
    Cu2OSeO3 represents a unique example in the family of B20 cubic helimagnets with a tilted spiral and a low-temperature skyrmion phase arising for magnetic fields applied along the easy crystallographic (100) axes. Although the stabilization mechanism of these phases can be accounted for by cubic magnetic anisotropy, the skyrmion nucleation process is still an open question, since the stability region of the skyrmion phase displays strongly hysteretic behavior with different phase boundaries for increasing and decreasing magnetic fields. Here, we address this important point using micromagnetic simulations and come to the conclusion that skyrmion nucleation is underpinned by the reorientation of spiral domains occurring near the critical magnetic fields of the phase diagrams: HC1, the critical field of the transition between the helical and conical/tiled spiral phase, and HC2, the critical field between the conical/tiled spiral and the homogenous phase. By studying a wide variety of cases we show that domain walls may have a 3D structure. Moreover, they can carry a finite topological charge stemming from half-skyrmions (merons) also permitting along-the-field and perpendicular-to-the-field orientation. Thus, domain walls may be envisioned as nucleation source of skyrmions that can form thermodynamically stable and metastable lattices as well as skyrmion networks with misaligned skyrmion tubes. The results of numerical simulations are discussed in view of recent experimental data on chiral magnets, in particular, for the bulk cubic helimagnet Cu2OSeO3.
  • Item
    STM induced manipulation of azulene-based molecules and nanostructures: the role of the dipole moment
    (Cambridge : RSC Publ., 2020) Kühne, Tim; Au-Yeung, Kwan Ho; Eisenhut, Frank; Aiboudi, Oumaima; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio; Lissel, Franziska; Moresco, Francesca
    Among the different mechanisms that can be used to drive a molecule on a surface by the tip of a scanning tunneling microscope at low temperature, we used voltage pulses to move azulene-based single molecules and nanostructures on Au(111). Upon evaporation, the molecules partially cleave and form metallo-organic dimers while single molecules are very scarce, as confirmed by simulations. By applying voltage pulses to the different structures under similar conditions, we observe that only one type of dimer can be controllably driven on the surface, which has the lowest dipole moment of all investigated structures. Experiments under different bias and tip height conditions reveal that the electric field is the main driving force of the directed motion. We discuss the different observed structures and their movement properties with respect to their dipole moment and charge distribution on the surface.
  • Item
    Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O
    (Melville, NY : AIP Publ., 2020) Hoffmann, Georg; Budde, Melanie; Mazzolini, Piero; Bierwagend, Oliver
    Sources of suboxides, providing several advantages over metal sources for the molecular beam epitaxy (MBE) of oxides, are conventionally realized by decomposing the corresponding oxide charge at extreme temperatures. By quadrupole mass spectrometry of the direct flux from an effusion cell, we compare this conventional approach to the reaction of a mixed oxide + metal charge as a source for suboxides with the examples of SnO2 + Sn → 2 SnO and Ga2O3 + 4 Ga → 3 Ga2O. The high decomposition temperatures of the pure oxide charge were found to produce a high parasitic oxygen background. In contrast, the mixed charges reacted at significantly lower temperatures, providing high suboxide fluxes without additional parasitic oxygen. For the SnO source, we found a significant fraction of Sn2O2 in the flux from the mixed charge that was basically absent in the flux from the pure oxide charge. We demonstrate the plasma-assisted MBE growth of SnO2 using the mixed Sn + SnO2 charge to require less activated oxygen and a significantly lower source temperature than the corresponding growth from a pure Sn charge. Thus, the sublimation of mixed metal + oxide charges provides an efficient suboxide source for the growth of oxides by MBE. Thermodynamic calculations predict this advantage for further oxides as well, e.g., SiO2, GeO2, Al2O3, In2O3, La2O3, and Pr2O3 © 2020 Author(s).
  • Item
    Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
    (Göttingen : Copernicus Publ., 2020) Geiges, Andreas; Nauels, Alexander; Yanguas Parra, Paola; Andrijevic, Marina; Hare, William; Pfleiderer, Peter; Schaeffer, Michiel; Schleussner, Carl-Friedrich
    Current global mitigation ambition up to 2030 under the Paris Agreement, reflected in the National Determined Contributions (NDCs), is insufficient to achieve the agreement's 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report on Global Warming of 1.5 °C by the Intergovernmental Panel on Climate Change has assessed a wide range of scenarios that achieve the 1.5 °C limit. Those pathways are characterised by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 °C benchmark. We find that incremental improvements in reduction targets, even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those median scenarios for extreme temperature, long-term sea-level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the gross domestic product (GDP) in tropical countries of around 60 % compared to a no-climate-change scenario and median long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 °C or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in aggregated NDC ambition of big emitters by 33 % in 2030 does not reduce presented climate impacts by more than about half compared to limiting warming to 1.5 °C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change. © 2020 SPIE. All rights reserved.
  • Item
    Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers
    (London : Nature Publishing Group, 2021) Marinov, Daniil; de Marneffe, Jean-François; Smets, Quentin; Arutchelvan, Goutham; Bal, Kristof M.; Voronina, Ekaterina; Rakhimova, Tatyana; Mankelevich, Yuri; El Kazzi, Salim; Nalin Mehta, Ankit; Wyndaele, Pieter-Jan; Heyne, Markus Hartmut; Zhang, Jianran; With, Patrick C.; Banerjee, Sreetama; Neyts, Erik C.; Asselberghs, Inge; Lin, Dennis; De Gendt, Stefan
    The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.
  • Item
    Fate of density waves in the presence of a higher-order van Hove singularity
    (College Park, MD : APS, 2023) Zervou, Alkistis; Efremov, Dmitry V.; Betouras, Joseph J.
    Topological transitions in electronic band structures, resulting in van Hove singularities in the density of states, can considerably affect various types of orderings in quantum materials. Regular topological transitions (of neck formation or collapse) lead to a logarithmic divergence of the electronic density of states (DOS) as a function of energy in two dimensions. In addition to the regular van Hove singularities, there are higher-order van Hove singularities (HOVHS) with a power-law divergence in DOS. By employing renormalization group techniques, we study the fate of a spin-density wave phase formed by nested parts of the Fermi surface, when a HOVHS appears in parallel. We find that the phase formation can be boosted by the presence of the singularity, with the critical temperature increasing by orders of magnitude, under certain conditions. We discuss possible applications of our findings to a range of quantum materials such as Sr3Ru2O7, Sr2RuO4, and transition metal dichalcogenides.
  • Item
    Spectroscopy of solid-solution transparent sesquioxide laser ceramic Tm:LuYO3
    (Washington, DC : OSA, 2022) Eremeev, Kirill; Loiko, Pavel; Braud, Alain; Camy, Patrice; Zhang, Jian; Xu, Xiaodong; Zhao, Yongguang; Liu, Peng; Balabanov, Stanislav; Dunina, Elena; Kornienko, Alexey; Fomicheva, Liudmila; Mateos, Xavier; Griebner, Uwe; Petrov, Valentin; Wang, Li; Chen, Weidong
    We report on a detailed spectroscopic study of a Tm3+-doped transparent sesquioxide ceramic based on a solid-solution (lutetia – yttria, LuYO3) composition. The ceramic was fabricated using commercial oxide powders by hot isostatic pressing at 1600°C for 3 h at 190 MPa argon pressure. The most intense Raman peak in Tm:LuYO3 at 385.4 cm−1 takes an intermediate position between those for the parent compounds and is notably broadened (linewidth: 12.8 cm−1). The transition intensities of Tm3+ ions were calculated using the Judd-Ofelt theory; the intensity parameters are W2 = 2.537, W4 = 1.156 and W6 = 0.939 [1020 cm2]. For the 3F4 → 3H6 transition, the stimulated-emission cross-section amounts to 0.27 × 10−20 cm2 at 2059nm and the reabsorption-free luminescence lifetime is 3.47 ms (the 3F4 radiative lifetime is 3.85 ± 0.1 ms). The Tm3+ ions in the ceramic exhibit long-wave multiphonon-assisted emission extending up to at least 2.35 µm; a phonon sideband at 2.23 µm is observed and explained by coupling between electronic transitions and the dominant Raman mode of the sesquioxides. Low temperature (12 K) spectroscopy reveals a significant inhomogeneous spectral broadening confirming formation of a substitutional solid-solution. The mixed ceramic is promising for ultrashort pulse generation at >2 µm.
  • Item
    Valence effect on the thermopower of Eu systems
    (College Park, MD : American Physical Society, 2020) Stockert, U.; Seiro, S.; Seiro, S.; Caroca-Canales, N.; Hassinger, E.; Hassinger, E.; Geibel, C.
    We investigated the thermoelectric transport properties of EuNi2P2 and EuIr2Si2 to evaluate the relevance of Kondo interaction and valence fluctuations in these materials. While the thermal conductivities behave conventionally, the thermopower curves exhibit large values with pronounced maxima as typically observed in Ce- and Yb-based heavy-fermion materials. However, neither the positions of these maxima nor the absolute thermopower values at low temperature are in line with the heavy-fermion scenario and the moderately enhanced effective charge carrier masses. Instead, we may relate the thermopower in our materials to the temperature-dependent Eu valence by taking into account changes in the chemical potential. Our analysis confirms that valence fluctuations play an important role in EuNi2P2 and EuIr2Si2.