Search Results

Now showing 1 - 4 of 4
  • Item
    On a fast integral equation method for diffraction gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Rathsfeld, Andreas; Schmidt, Gunther; Kleemann, Bernd
    The integral equation method for the simulation of the diffraction by optical gratings is an efficient numerical tool if profile gratings determined by simple cross-section curves are considered. This method in its recent version is capable to tackle profile curves with corners, gratings with thin coated layers, and diffraction scenarios with unfavorably large ratios period over wavelength. We discuss special implementational issues including the efficient evaluation of the quasi-periodic Green kernels, the quadrature algorithm, and the iterative solution of the arising systems of linear equations. Finally, as application we present the simulation of coated echelle gratings which demonstrates the efficency of our approach.
  • Item
    Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Gross, Hermann; Henn, Mark-Alexander; Heidenreich, Sebastian; Rathsfeld, Andreas; Bär, Markus
    We investigate the impact of line edge and line width roughness (LER, LWR) on the measured diffraction intensities in angular resolved extreme ultraviolet (EUV) scatterometry for a periodic line-space structure designed for EUV lithography. LER and LWR with typical amplitudes of a few nanometers were previously neglected in the course of the profile reconstruction. The 2D rigorous numerical simulations of the diffraction process for periodic structures are carried out with the finite element method (FEM) providing a numerical solution of the two-dimensional Helmholtz equation. To model roughness, multiple calculations are performed for domains with large periods, containing many pairs of line and space with stochastically chosen line and space widths. A systematic decrease of the mean efficiencies for higher diffraction orders along with increasing variances is observed and established for different degrees of roughness. ...
  • Item
    Direct and inverse elastic scattering problems for diffraction gratings
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Elschner, Johannes; Hu, Guanghui
    This paper is concerned with the direct and inverse scattering of time-harmonic plane elastic waves by unbounded periodic structures (diffraction gratings). We present a variational approach to the forward scattering problems with Lipschitz grating profiles and give a survey of recent uniqueness and existence results. We also report on recent global uniqueness results within the class of piecewise linear grating profiles for the corresponding inverse elastic scattering problems. Moreover, a discrete Galerkin method is presented to efficiently approximate solutions of direct scattering problems via an integral equation approach. Finally, an optimization method for solving the inverse problem of recovering a 2D periodic structure from scattered elastic waves measured above the structure is discussed.
  • Item
    Inverse scattering of elastic waves by periodic structures : uniqueness under the third or fourth kind boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Elschner, Johannes; Hu, Guanghui
    The inverse scattering of a time-harmonic elastic wave by a two-dimensional periodic structure in R 2 is investigated. The grating profile is assumed to be a graph given by a piecewise linear function on which the third or fourth kind boundary conditions are satisfied. Via an equivalent variational formulation, existence of quasi-periodic solutions for general Lipschitz grating profiles is proved by applying the Fredholm alternative. However, uniqueness of solution to the direct problem does not hold in general. For the inverse problem, we determine and classify all the unidentifiable grating profiles corresponding to a given incident elastic field, relying on the reflection principle for the Navier equation and the rotational invariance of propagating directions of the total field. Moreover, global uniqueness for the inverse problem is established with a minimal number of incident pressure or shear waves, including the resonance case where a Rayleigh frequency is allowed. The gratings that are unidentifiable by one incident elastic wave provide non-uniqueness examples for appropriately chosen wave number and incident angles