Search Results

Now showing 1 - 9 of 9
  • Item
    1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis
    (Weinheim : Wiley-VCH, 2021) Najafidehaghani, Emad; Gan, Ziyang; George, Antony; Lehnert, Tibor; Ngo, Gia Quyet; Neumann, Christof; Bucher, Tobias; Staude, Isabelle; Kaiser, David; Vogl, Tobias; Hübner, Uwe; Kaiser, Ute; Eilenberger, Falk; Turchanin, Andrey
    Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Photodoping and Fast Charge Extraction in Ionic Carbon Nitride Photoanodes
    (Weinheim : Wiley-VCH, 2021) Adler, Christiane; Selim, Shababa; Krivtsov, Igor; Li, Chunyu; Mitoraj, Dariusz; Dietzek, Benjamin; Durrant, James R.; Beranek, Radim
    Ionic carbon nitrides based on poly(heptazine imides) (PHI) represent a vigorously studied class of materials with possible applications in photocatalysis and energy storage. Herein, for the first time, the photogenerated charge dynamics in highly stable and binder-free PHI photoanodes using in operando transient photocurrents and spectroelectrochemical photoinduced absorption measurements is studied. It is discovered that light-induced accumulation of long-lived trapped electrons within the PHI film leads to effective photodoping of the PHI film, resulting in a significant improvement of photocurrent response due to more efficient electron transport. While photodoping is previously reported for various semiconductors, it has not been shown before for carbon nitride materials. Furthermore, it is found that the extraction kinetics of untrapped electrons are remarkably fast in these PHI photoanodes, with electron extraction times (ms) comparable to those measured for commonly employed metal oxide semiconductors. These results shed light on the excellent performance of PHI photoanodes in alcohol photoreforming, including very negative photocurrent onset, outstanding fill factor, and the possibility to operate under zero-bias conditions. More generally, the here reported photodoping effect and fast electron extraction in PHI photoanodes establish a strong rationale for the use of PHI films in various applications, such as bias-free photoelectrochemistry or photobatteries. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Plasma-based VAD process for multiply doped glass powders and high-performance fiber preforms with outstanding homogeneity
    (Hoboken, NJ : Wiley Interscience, 2020) Trautvetter, Tom; Schäfer, Jan; Benzine, Omar; Methling, Ralf; Baierl, Hardy; Reichel, Volker; Dellith, Jan; Köpp, Daniel; Hempel, Frank; Stankov, Marjan; Baeva, Margarita; Foest, Rüdiger; Wondraczek, Lothar; Wondraczek, Katrin; Bartelt, Hartmut
    An innovative approach using the vapor axial deposition (VAD), for the preparation of silica-based high-power fiber laser preforms, is described in this study. The VAD uses a plasma deposition system operating at atmospheric pressure, fed by a single, chemically adapted solution containing precursors of laser-active dopants (e.g., Yb2O3), glass-modifier species (e.g., Al2O3), and the silica matrix. The approach enables simultaneous doping with multiple optically active species and overcomes some of the current technological limitations encountered with well-established fiber preform technologies in terms of dopant distribution, doping levels, and achievable active core diameter. The deposition of co-doped silica with outstanding homogeneity is proven by Raman spectroscopy and electron probe microanalysis. Yb2O3 concentrations are realized up to 0.3 mol% in SiO2, with simultaneous doping of 3 mol% of Al2O3.
  • Item
    Use of polymers as wavenumber calibration standards in deep-UVRR
    (Amsterdam [u.a.] : Elsevier Science, 2022) Pistiki, Aikaterini; Ryabchykov, Oleg; Bocklitz, Thomas W.; Rösch, Petra; Popp, Jürgen
    Deep-UV resonance Raman spectroscopy (UVRR) allows the classification of bacterial species with high accuracy and is a promising tool to be developed for clinical application. For this attempt, the optimization of the wavenumber calibration is required to correct the overtime changes of the Raman setup. In the present study, different polymers were investigated as potential calibration agents. The ones with many sharp bands within the spectral range 400–1900 cm−1 were selected and used for wavenumber calibration of bacterial spectra. Classification models were built using a training cross-validation dataset that was then evaluated with an independent test dataset obtained after 4 months. Without calibration, the training cross-validation dataset provided an accuracy for differentiation above 99 % that dropped to 51.2 % after test evaluation. Applying the test evaluation with PET and Teflon calibration allowed correct assignment of all spectra of Gram-positive isolates. Calibration with PS and PEI leads to misclassifications that could be overcome with majority voting. Concerning the very closely related and similar in genome and cell biochemistry Enterobacteriaceae species, all spectra of the training cross-validation dataset were correctly classified but were misclassified in test evaluation. These results show the importance of selecting the most suitable calibration agent in the classification of bacterial species and help in the optimization of the deep-UVRR technique.
  • Item
    Large-area wet-chemical deposition of nanoporous tungstic silica coatings
    (London [u.a.] : RSC, 2015) Nielsen, K.H.; Wondraczek, K.; Schubert, U.S.; Wondraczek, L.
    We report on a facile procedure for synthesis of nanoporous coatings of tungstic silica through wet-chemical deposition and post-treatment of tungsten-doped potassium silicate solutions. The process relies on an aqueous washing and ion exchange step where dispersed potassium salt deposits are removed from a 150 nm silicate gel layer. Through an adjustment of the pH value of the washing agent within the solubility regime of a tungstic salt precursor, the tungsten content of the remaining nanostructured coating can be controlled. We propose this route as a universal approach for the deposition of large-area coatings of nanoporous silica with the potential for incorporating a broad variety of other dopant species. As for the present case, we observe, on the one hand, antireflective properties which enable the reduction of reflection losses from float glass by up to 3.7 percent points. On the other hand, the incorporation of nanoscale tungstic precipitates provides a lever for tailoring the coating hydrophilicity and, eventually, also surface acidity. This may provide a future route for combining optical performance with anti-fouling functionality.
  • Item
    A classical description of subnanometer resolution by atomic features in metallic structures
    (Cambridge : RSC Publ., 2016) Trautmann, S.; Aizpurua, J.; Götz, I.; Undisz, A.; Dellith, J.; Schneidewind, H.; Rettenmayr, M.; Deckert, V.
    Recent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes.
  • Item
    Plasmon response evaluation based on image-derived arbitrary nanostructures
    (Cambridge : RSC Publ., 2018) Trautmann, S.; Richard-Lacroix, M.; Dathe, A.; Schneidewind, H.; Dellith, J.; Fritzsche, W.; Deckert, V.
    The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems.
  • Item
    Photophysics of BODIPY dyes as readily designable photosensitisers in light-driven proton reduction
    (Basel : MDPI, 2017) Dura, Laura; Wächtler, Maria; Kupfer, Stephan; Kübel, Joachim; Ahrens, Johannes; Höfler, Sebastian; Bröring, Martin; Dietzek, Benjamin; Beweries, Torsten
    A series of boron dipyrromethene (BODIPY) dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3)Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.
  • Item
    Merging Top-Down and Bottom-Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response
    (Weinheim : Wiley-VCH Verlag, 2020) Dietrich K.; Zilk M.; Steglich M.; Siefke T.; Hübner U.; Pertsch T.; Rockstuhl C.; Tünnermann A.; Kley E.-B.
    Artificial photonic nanomaterials made from densely packed scatterers are frequently realized either by top-down or bottom-up techniques. While top-down techniques offer unprecedented control over achievable geometries for the scatterers, by trend they suffer from being limited to planar and periodic structures. In contrast, materials fabricated with bottom-up techniques do not suffer from such disadvantages but, unfortunately, they offer only little control on achievable geometries for the scatterers. To overcome these limitations, a nanofabrication strategy is introduced that merges both approaches. A large number of scatterers are fabricated with a tailored optical response by fast character projection electron-beam lithography and are embedded into a membrane. By peeling-off this membrane from the substrate, scrambling, and densifying it, a bulk material comprising densely packed and randomly arranged scatterers is obtained. The fabrication of an isotropic material from these scatterers with a strong electric and magnetic response is demonstrated. The approach of this study unlocks novel opportunities to fabricate nanomaterials with a complex optical response in the bulk but also on top of arbitrarily shaped surfaces. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim