Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications

2020-12-4, Utech, Toni, Pötschke, Petra, Simon, Frank, Janke, Andreas, Kettner, Hannes, Paiva, Maria, Zimmerer, Cordelia

Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.

Loading...
Thumbnail Image
Item

Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials

2021, He, Shiyang, Lehmann, Sebastian, Bahrami, Amin, Nielsch, Kornelius

Thermoelectric (TE) materials are prominent candidates for energy converting applications due to their excellent performance and reliability. Extensive efforts for improving their efficiency in single-/multi-phase composites comprising nano/micro-scale second phases are being made. The artificial decoration of second phases into the thermoelectric matrix in multi-phase composites, which is distinguished from the second-phase precipitation occurring during the thermally equilibrated synthesis of TE materials, can effectively enhance their performance. Theoretically, the interfacial manipulation of phase boundaries can be extended to a wide range of materials. High interface densities decrease thermal conductivity when nano/micro-scale grain boundaries are obtained and certain electronic structure modifications may increase the power factor of TE materials. Based on the distribution of second phases on the interface boundaries, the strategies can be divided into discontinuous and continuous interfacial modifications. The discontinuous interfacial modifications section in this review discusses five parts chosen according to their dispersion forms, including metals, oxides, semiconductors, carbonic compounds, and MXenes. Alternatively, gas- and solution-phase process techniques are adopted for realizing continuous surface changes, like the core–shell structure. This review offers a detailed analysis of the current state-of-the-art in the field, while identifying possibilities and obstacles for improving the performance of TE materials.

Loading...
Thumbnail Image
Item

Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity

2022, Borrmann, Fabian, Tsuda, Takuya, Guskova, Olga, Kiriy, Nataliya, Hoffmann, Cedric, Neusser, David, Ludwigs, Sabine, Lappan, Uwe, Simon, Frank, Geisler, Martin, Debnath, Bipasha, Krupskaya, Yulia, Al‐Hussein, Mahmoud, Kiriy, Anton

The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.

Loading...
Thumbnail Image
Item

Topology- and Geometry-Controlled Functionalization of Nanostructured Metamaterials

2023, Fomin, Vladimir M., Marquardt, Oliver

[no abstract available]

Loading...
Thumbnail Image
Item

Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion

2021, Zhang, Qihao, Huang, Aibin, Ai, Xin, Liao, Jincheng, Song, Qingfeng, Reith, Heiko, Cao, Xun, Fang, Yueping, Schierning, Gabi, Nielsch, Kornelius, Bai, Shengqiang, Chen, Lidong

Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.

Loading...
Thumbnail Image
Item

16.3 w peak‐power pulsed all‐diode laser based multi‐wavelength master‐oscillator power‐amplifier system at 964 nm

2021, Vu, Thi Nghiem, Tien, Tran Quoc, Sumpf, Bernd, Klehr, Andreas, Fricke, Jörg, Wenzel, Hans, Tränkle, Günther

An all-diode laser-based master oscillator power amplifier (MOPA) configuration for the generation of ns-pulses with high peak power, stable wavelength and small spectral line width is presented. The MOPA emits alternating at two wavelengths in the spectral range between 964 nm and 968 nm, suitable for the detection of water vapor by absorption spectroscopy. The monolithic master oscillator (MO) consists of two slightly detuned distributed feedback laser branches, whose emission is combined in a Y-coupler. The two emission wavelengths can be adjusted by varying the current or temperature to an absorption line and to a non-absorbing region. The power amplifier (PA) consists of a ridge-waveguide (RW) section and a tapered section, monolithically integrated within one chip. The RW section of the PA acts as an optical gate and converts the continuous wave input beam emitted by the MO into a sequence of short optical pulses, which are subsequently amplified by the tapered section to boost the output power. For a pulse width of 8 ns, a peak power of 16.3 W and a side mode suppression ratio of more than 37 dB are achieved at a repetition rate of 25 kHz. The measured spectral width of 10 pm, i.e., 0.1 cm−1, is limited by the resolution of the optical spectrum analyzer. The generated pulses emitting alternating at two wavelengths can be utilized in a differential absorption light detection and ranging system.