Search Results

Now showing 1 - 7 of 7
  • Item
    Short-Range Cooperative Slow-down of Water Solvation Dynamics Around SO42--Mg2+ Ion Pairs
    (Washington, DC : American Chemical Society, 2022) Kundu, Achintya; Mamatkulov, Shavkat I.; Brünig, Florian N.; Bonthuis, Douwe Jan; Netz, Roland R.; Elsaesser, Thomas; Fingerhut, Benjamin P.
    The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg2+ and SO42- ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics. Here, we introduce asymmetric SO42- stretching vibrations as new and most specific local probes of solvation dynamics that allow to access ion hydration dynamics at the dilute concentration (0.2 M) of a native electrolyte environment. Highly sensitive heterodyne 2D-IR spectroscopy in the fingerprint region of the SO42- ions around 1100 cm-1 reveals a specific slow-down of solvation dynamics for hydrated MgSO4 and for Na2SO4 in the presence of Mg2+ ions, which manifests as a retardation of spectral diffusion compared to aqueous Na2SO4 solutions in the absence of Mg2+ ions. Extensive molecular dynamics and density functional theory QM/MM simulations provide a microscopic view of the observed ultrafast dephasing and hydration dynamics. They suggest a molecular picture where the slow-down of hydration dynamics arises from the structural peculiarities of solvent-shared SO42--Mg2+ ion pairs.
  • Item
    Local chain deformation and overstrain in reinforced elastomers: An NMR study
    (Washington, DC : American Chemical Society, 2013) Pérez-Aparicio, R.; Schiewek, M.; Valentín, J.L.; Schneider, H.; Long, D.R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M.
    A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to lead to highly improved mechanical properties. A multiple-quantum NMR approach enables the separation of relatively low fractions of network defects and allows to quantitatively and selectively study the local deformation distribution in the strained networks matrix on the microscopic (molecular) scale. We find that the presence of nondeformable filler particles induces an enhanced local deformation of the matrix (commonly referred to as overstrain), a slightly increased local stress/strain heterogeneity, and a reduced anisotropy. Furthermore, a careful analysis of the small nonelastic defect fraction provides new evidence that previous NMR and scattering results of strained defect-rich elastomers cannot be interpreted without explicitly taking the nonelastic defect fraction into account.
  • Item
    Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states
    (Washington, DC : American Chemical Society, 2014) Schell, A.W.; Engel, P.; Werra, J.F.M.; Wolff, C.; Busch, K.; Benson, O.
    Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.
  • Item
    TiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insights
    (Washington, DC : American Chemical Society, 2020) Maletti, Sebastian; Herzog-Arbeitman, Abraham; Oswald, Steffen; Senyshyn, Anatoliy; Giebeler, Lars; Mikhailova, Daria
    As one of the beyond-lithium battery concepts, hybrid metal-ion batteries have aroused growing interest. Here, TiNb2O7 (TNO) and VNb9O25 (VNO) materials were prepared using a high-temperature solid-state synthesis and, for the first time, comprehensively examined in hybrid Mg−Li batteries. Both materials adopt ReO3-related structures differing in the interconnection of oxygen polyhedra and the resulting guest ion diffusion paths. We show applicability of the compounds in hybrid cells providing capacities comparable to those reached in Li-ion batteries (LIBs) at room temperature (220 mAh g−1 for TNO and 150 mAh g−1 for VNO, both at 0.1 C), their operability in the temperature range between −10 and 60 °C, and even better capacity retention than in pure LIBs, rendering this hybrid technology superior for long-term application. Post mortem X-ray photoelectron spectroscopy reveals a cathode−electrolyte interface as a key ingredient for providing excellent electrochemical stability of the hybrid battery. A significant contribution of the intercalation pseudocapacitance to charge storage was observed for both materials in Li- and Mg−Li batteries. However, the pseudocapacitive part is higher for TNO than for VNO, which correlates with structural distinctions, providing better accessibility of diffusion pathways for guest cations in TNO and, as a consequence, a higher ionic transport within the crystal structure. © 2020 American Chemical Society
  • Item
    A graphene-based hot electron transistor
    (Washington, DC : American Chemical Society, 2013) Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A.D.; Östling, M.; Dabrowski, J.; Lippert, G.; Mehr, W.; Lemme, M.C.
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 104.
  • Item
    X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor
    (Washington, DC : American Chemical Society, 2011) Hrauda, N.; Zhang, J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C.; Nanver, L.K.; Moers, J.; Grützmacher, D.; Bauer, G.
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.
  • Item
    Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F(-) + CH3I
    (Washington, DC : American Chemical Society, 2016) Carrascosa, Eduardo; Michaelsen, Tim; Stei, Martin; Bastian, Björn; Meyer, Jennifer; Mikosch, Jochen; Wester, Roland
    Ion–molecule reactions of the type X– + CH3Y are commonly assumed to produce Y– through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F– + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I– is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF– via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI]− product ion. This [FHI]− product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I–. A similar trend is observed for the isoelectronic OH– + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy.