Search Results

Now showing 1 - 6 of 6
  • Item
    X-ray spectroscopy of super-intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations
    (Bristol : IOP Publ., 2017) Dalimier, E.; Ya Faenov, A.; Oks, E.; Angelo, P.; Pikuz, T.A.; Fukuda, Y.; Andreev, A.; Koga, J.; Sakaki, H.; Kotaki, H.; Pirozhkov, A.; Hayashi, Y.; Skobelev, I.Yu.; Pikuz, S.A.; Kawachi, T.; Kando, M.; Kondo, K.; Zhidkov, A.; Tubman, E.; Butler, N.M.H.; Dance, R.J.; Alkhimova, M.A.; Booth, N.; Green, J.; Gregory, C.; McKenna, P.; Woolsey, N.; Kodama, R.
    We present X-ray spectroscopic diagnostics in femto-second laser-driven experiments revealing nonlinear phenomena caused by the strong coupling of the laser radiation with the created plasma. Among those nonlinear phenomena, we found the signatures of the Two Plasmon Decay (TPD) instability in a laser-driven CO2 cluster-based plasma by analyzing the Langmuir dips in the profile of the O VIII Lyϵ line, caused by the Langmuir waves created at the high laser intensity 3 1018Wcm-2. With similar laser intensities, we reveal also the nonlinear phenomenon of the Second Harmonic Generation (SHG) of the laser frequency by analyzing the nonlinear phenomenon of satellites of Lyman δ and ϵ lines of Ar XVII. In the case of relativistic laser-plasma interaction we discovered the Parametric Decay Instability (PDI)-induced ion acoustic turbulence produced simultaneously with Langmuir waves via irradiation of thin Si foils by laser intensities of 1021Wcm-2.
  • Item
    Phenomenology of iron-assisted ion beam pattern formation on Si(001)
    (Bristol : IOP, 2011) MacKo, S.; Frost, F.; Engler, M.; Hirsch, D.; Höche, T.; Grenzer, J.; Michely, T.
    Pattern formation on Si(001) through 2 keV Kr+ ion beam erosion of Si(001) at an incident angle of # = 30° and in the presence of sputter codeposition or co-evaporation of Fe is investigated by using in situ scanning tunneling microscopy, ex situ atomic force microscopy and electron microscopy. The phenomenology of pattern formation is presented, and experiments are conducted to rule out or determine the processes of relevance in ion beam pattern formation on Si(001) with impurities. Special attention is given to the determination of morphological phase boundaries and their origin. Height fluctuations, local flux variations, induced chemical inhomogeneities, silicide formation and ensuing composition-dependent sputtering are found to be of relevance for pattern formation.
  • Item
    A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams
    (College Park, MD : Institute of Physics Publishing, 2010) Pfotenhauer, S.M.; Jäckel, O.; Polz, J.; Steinke, S.; Schlenvoigt, H.-P.; Heymann, J.; Robinson, A.P.L.; Kaluza, M.C.
    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser-plasma interaction on a thin foil target is spectrally shaped by a secondary laser-plasma interaction on a separate foil, reliably creating well-separated quasi-monoenergetic features in the energy spectrum. The observed modulations are fully explained by a one-dimensional (1D) model supported by numerical simulations. These findings demonstrate that laser acceleration can, in principle, be applied in an additive manner. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Behavior of a porous particle in a radiofrequency plasma under pulsed argon ion beam bombardment
    (College Park, MD : Institute of Physics Publishing, 2010) Wiese, R.; Sushkov, V.; Kersten, H.; Ikkurthi, V.R.; Schneider, R.; Hippler, R.
    The behavior of a single porous particle with a diameter of 250 μm levitating in a radiofrequency (RF) plasma under pulsed argon ion beam bombardment was investigated. The motion of the particle under the action of the ion beam was observed to be an oscillatory motion. The Fourier-analyzed motion is dominated by the excitation frequency of the pulsed ion beam and odd higher harmonics, which peak near the resonance frequency. The appearance of even harmonics is explained by a variation of the particles's charge depending on its position in the plasma sheath. The Fourier analysis also allows a discussion of neutral and ion forces. The particle's charge was derived and compared with theoretical estimates based on the orbital motion-limited (OML) model using also a numerical simulation of the RF discharge. The derived particle's charge is about 7-15 times larger than predicted by the theoretical models. This difference is attributed to the porous structure of the particle. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Using the third state of matter: High harmonic generation from liquid targets
    (Bristol : IOP, 2014) Heissler, P.; Lugovoy, E.; Hörlein, R.; Waldecker, L.; Wenz, J.; Heigoldt, M.; Khrennikov, K.; Karsch, S.; Krausz, F.; Abel, B.; Tsakiris, G.D.
    High harmonic generation on solid and gaseous targets has been proven to be a powerful platform for the generation of attosecond pulses. Here we demonstrate a novel technique for the XUV generation on a smooth liquid surface target in vacuum, which circumvents the problem of low repetition rate and limited shot numbers associated with solid targets, while it maintains some of its merits. We employed atomically smooth, continuous liquid jets of water, aqueous salt solutions and ethanol that allow uninterrupted high harmonic generation due to the coherent wake emission mechanism for over 8 h. It has been found that the mechanism of plasma generation is very similar to that for smooth solid target surfaces. The vapor pressure around the liquid target in our setup has been found to be very low such that the presence of the gas phase around the liquid jet could be neglected.
  • Item
    A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments
    (Melville, NY : American Institute of Physics, 2018) Ostermayr, T.M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.
    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.