Search Results

Now showing 1 - 2 of 2
  • Item
    Characterization of self-modulated electron bunches in an argon plasma
    (Bristol : IOP Publ., 2018) Gross, M.; Lishilin, O.; Loisch, G.; Boonpornprasert, P.; Chen, Y.; Engel, J.; Good, J.; Huck, H.; Isaev, I.; Krasilnikov, M.; Li, X.; Niemczyk, R.; Oppelt, A.; Qian, H.; Renier, Y.; Stephan, F.; Zhao, Q.; Brinkmann, R.; Martinez de la Ossa, A.; Osterhoff, J.; Grüner, F.J.; Mehrling, T.; Schroeder, C.B.; Will, I.
    The self-modulation instability is fundamental for the plasma wakefield acceleration experiment of the AWAKE (Advanced Wakefield Experiment) collaboration at CERN where this effect is used to generate proton bunches for the resonant excitation of high acceleration fields. Utilizing the availability of flexible electron beam shaping together with excellent diagnostics including an RF deflector, a supporting experiment was set up at the electron accelerator PITZ (Photo Injector Test facility at DESY, Zeuthen site), given that the underlying physics is the same. After demonstrating the effect [1] the next goal is to investigate in detail the self-modulation of long (with respect to the plasma wavelength) electron beams. In this contribution we describe parameter studies on self-modulation of a long electron bunch in an argon plasma. The plasma was generated with a discharge cell with densities in the 1013 cm-3 to 1015 cm-3 range. The plasma density was deduced from the plasma wavelength as indicated by the self-modulation period. Parameter scans were conducted with variable plasma density and electron bunch focusing.
  • Item
    Merging Top-Down and Bottom-Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response
    (Weinheim : Wiley-VCH Verlag, 2020) Dietrich K.; Zilk M.; Steglich M.; Siefke T.; Hübner U.; Pertsch T.; Rockstuhl C.; Tünnermann A.; Kley E.-B.
    Artificial photonic nanomaterials made from densely packed scatterers are frequently realized either by top-down or bottom-up techniques. While top-down techniques offer unprecedented control over achievable geometries for the scatterers, by trend they suffer from being limited to planar and periodic structures. In contrast, materials fabricated with bottom-up techniques do not suffer from such disadvantages but, unfortunately, they offer only little control on achievable geometries for the scatterers. To overcome these limitations, a nanofabrication strategy is introduced that merges both approaches. A large number of scatterers are fabricated with a tailored optical response by fast character projection electron-beam lithography and are embedded into a membrane. By peeling-off this membrane from the substrate, scrambling, and densifying it, a bulk material comprising densely packed and randomly arranged scatterers is obtained. The fabrication of an isotropic material from these scatterers with a strong electric and magnetic response is demonstrated. The approach of this study unlocks novel opportunities to fabricate nanomaterials with a complex optical response in the bulk but also on top of arbitrarily shaped surfaces. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim