3 results
Search Results
Now showing 1 - 3 of 3
- ItemCharacterization of self-modulated electron bunches in an argon plasma(Bristol : IOP Publ., 2018) Gross, M.; Lishilin, O.; Loisch, G.; Boonpornprasert, P.; Chen, Y.; Engel, J.; Good, J.; Huck, H.; Isaev, I.; Krasilnikov, M.; Li, X.; Niemczyk, R.; Oppelt, A.; Qian, H.; Renier, Y.; Stephan, F.; Zhao, Q.; Brinkmann, R.; Martinez de la Ossa, A.; Osterhoff, J.; Grüner, F.J.; Mehrling, T.; Schroeder, C.B.; Will, I.The self-modulation instability is fundamental for the plasma wakefield acceleration experiment of the AWAKE (Advanced Wakefield Experiment) collaboration at CERN where this effect is used to generate proton bunches for the resonant excitation of high acceleration fields. Utilizing the availability of flexible electron beam shaping together with excellent diagnostics including an RF deflector, a supporting experiment was set up at the electron accelerator PITZ (Photo Injector Test facility at DESY, Zeuthen site), given that the underlying physics is the same. After demonstrating the effect [1] the next goal is to investigate in detail the self-modulation of long (with respect to the plasma wavelength) electron beams. In this contribution we describe parameter studies on self-modulation of a long electron bunch in an argon plasma. The plasma was generated with a discharge cell with densities in the 1013 cm-3 to 1015 cm-3 range. The plasma density was deduced from the plasma wavelength as indicated by the self-modulation period. Parameter scans were conducted with variable plasma density and electron bunch focusing.
- ItemMerging Top-Down and Bottom-Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response(Weinheim : Wiley-VCH Verlag, 2020) Dietrich K.; Zilk M.; Steglich M.; Siefke T.; Hübner U.; Pertsch T.; Rockstuhl C.; Tünnermann A.; Kley E.-B.Artificial photonic nanomaterials made from densely packed scatterers are frequently realized either by top-down or bottom-up techniques. While top-down techniques offer unprecedented control over achievable geometries for the scatterers, by trend they suffer from being limited to planar and periodic structures. In contrast, materials fabricated with bottom-up techniques do not suffer from such disadvantages but, unfortunately, they offer only little control on achievable geometries for the scatterers. To overcome these limitations, a nanofabrication strategy is introduced that merges both approaches. A large number of scatterers are fabricated with a tailored optical response by fast character projection electron-beam lithography and are embedded into a membrane. By peeling-off this membrane from the substrate, scrambling, and densifying it, a bulk material comprising densely packed and randomly arranged scatterers is obtained. The fabrication of an isotropic material from these scatterers with a strong electric and magnetic response is demonstrated. The approach of this study unlocks novel opportunities to fabricate nanomaterials with a complex optical response in the bulk but also on top of arbitrarily shaped surfaces. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemPhysical regimes of electrostatic wave-wave nonlinear interactions generated by an electron beam propagating in a background plasma(Melville, NY : AIP, 2022) Sun, Haomin; Chen, Jian; Kaganovich, Igor D.; Khrabrov, Alexander; Sydorenko, DmytroElectron-beam plasma interaction has long been a topic of great interest. Despite the success of the quasilinear and weak turbulence theories, their validities are limited by the requirements of a sufficiently dense mode spectrum and a small wave amplitude. In this paper, we extensively study the collective processes of a mono-energetic electron beam emitted from a thermionic cathode propagating through a cold plasma by performing high-resolution two-dimensional particle-in-cell simulations and using analytical theories. We confirm that, during the initial stage of two-stream instability between the beam and background cold electrons, it is saturated due to the well-known wave-trapping mechanism. Further evolution occurs due to strong wave-wave nonlinear processes. We show that the beam-plasma interaction can be classified into four different physical regimes in the parameter space for the plasma and beam parameters. The differences between the regimes are analyzed in detail. We identify a new regime in the strong Langmuir turbulence featured by what we call electron modulational instability (EMI) that could create a local Langmuir wave packet growing faster than the ion plasma frequency. Ions do not have time to respond to EMI in the initial growing stage. On a longer timescale, the action of the ponderomotive force produces very strong ion density perturbations, and eventually, the beam-plasma wave interaction stops being resonant due to the strong ion density perturbations. Consequently, in this EMI regime, electron beam-plasma interaction occurs in a repetitive (intermittent) process. The beam electrons are strongly scattered by waves, and the Langmuir wave spectrum is significantly broadened, which in turn gives rise to strong heating of bulk electrons. Associated energy transfer from the beam to the background plasma electrons has been studied. A resulting kappa (κ) distribution and a wave-energy spectrum E2(k)∼k-5 are observed in the strong turbulent regime.