Search Results

Now showing 1 - 2 of 2
  • Item
    Continuous Wave THz System Based on an Electrically Tunable Monolithic Dual Wavelength Y-Branch DBR Diode Laser
    (New York, NY : Springer, 2020) Gwaro, Jared O.; Brenner, Carsten; Theurer, L.S.; Maiwald, M.; Sumpf, Bernd; Hofmann, Martin R.
    We analyse the use of a tunable dual wavelength Y-branch DBR laser diode for THz applications. The laser generates electrically tunable THz difference frequencies in the range between 100 and 300 GHz. The optical beats are tuned via current injection into a micro-resistor heater integrated on top of one of the distributed Bragg reflector (DBR) section of the diode. The laser is integrated in a homodyne THz system employing fiber coupled ion-implanted LT-GaAs log spiral antennas. The applicability of the developed system in THz spectroscopy is demonstrated by evaluating the spectral resonances of a THz filter as well as in THz metrology in thickness determination of a polyethylene sample.
  • Item
    Spectral linewidth vs. Front facet reflectivity of 780 nm DFB diode lasers at high optical output power
    (Basel : MDPI AG, 2018) Nguyen, T.-P.; Wenzel, H.; Brox, O.; Bugge, F.; Ressel, P.; Schiemangk, M.; Wicht, A.; Tien, T.Q.; Tränkle, G.
    The influence of the front facet reflectivity on the spectral linewidth of high power DFB (distributed feedback) diode lasers emitting at 780 nm has been investigated theoretically and experimentally. Characterization of lasers at various front facet reflections showed substantial reduction of the linewidth. This behavior is in reasonable agreement with simulation results. A minimum linewidth of 8 kHz was achieved at an output power of 85 mW with the laser featuring a front facet reflectivity of 30%. The device with a front facet reflectivity of 5% reached the same linewidth value at an output power of 290 mW.