2 results
Search Results
Now showing 1 - 2 of 2
- ItemExperimentally minimized beam emittance from an L-band photoinjector(College Park : American Institute of Physics Inc., 2012) Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.-J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; Klemz, G.; Köhler, W.; Mahgoub, M.; Malyutin, D.; Nozdrin, M.; Oppelt, A.; Otevrel, M.; Petrosyan, B.; Rimjaem, S.; Shapovalov, A.; Vashchenko, G.; Weidinger, S.; Wenndorff, R.; Flöttmann, K.; Hoffmann, M.; Lederer, S.; Schlarb, H.; Schreiber, S.; Templin, I.; Will, I.; Paramonov, V.; Richter, D.High brightness electron sources for linac based free-electron lasers (FELs) are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008-2009 for a bunch charge of 1, 0.5, 0.25, and 0.1nC resulted in measured emittance values which are beyond the requirements of the European XFEL. Several essential modifications were commissioned in 2010-2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.
- ItemJitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser([Bad Honnef] : Dt. Physikalische Ges., 2017-04-10) Savelyev, Evgeny; Boll, Rebecca; Bomme, Cédric; Schirmel, Nora; Redlin, Harald; Erk, Benjamin; Düsterer, Stefan; Müller, Erland; Höppner, Hauke; Toleikis, Sven; Müller, Jost; Kristin Czwalinna, Marie; Treusch, Rolf; Kierspel, Thomas; Mullins, Terence; Trippel, Sebastian; Wiese, Joss; Küpper, Jochen; Brauβe, Felix; Krecinic, Faruk; Rouzée, Arnaud; Rudawski, Piotr; Johnsson, Per; Amini, Kasra; Lauer, Alexandra; Burt, Michael; Brouard, Mark; Christensen, Lauge; Thøgersen, Jan; Stapelfeldt, Henrik; Berrah, Nora; Müller, Maria; Ulmer, Anatoli; Techert, Simone; Rudenko, Artem; Rolles, DanielIn pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene (C6H3F2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. We discuss in detail the necessary data analysis steps and describe the origin of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.