Search Results

Now showing 1 - 4 of 4
  • Item
    Molecular Beam Epitaxy Growth and Characterization of Germanium-Doped Cubic AlxGa1−xN
    (Weinheim : Wiley-VCH, 2020) Deppe, Michael; Henksmeier, Tobias; Gerlach, Jürgen W.; Reuter, Dirk; As, Donat J.
    In cubic (c-)GaN Ge has emerged as a promising alternative to Si for n-type doping, offering the advantage of slightly improved electrical properties. Herein, a study on Ge doping of the ternary alloy c-AlxGa1−xN is presented. Ge-doped c-AlxGa1−xN layers are grown by plasma-assisted molecular beam epitaxy. In two sample series, both the Al mole fraction x and the doping level are varied. The incorporation of Ge is verified by time-of-flight secondary ion mass spectrometry. Ge incorporation and donor concentrations rise exponentially with increasing Ge cell temperature. A maximum donor concentration of 1.4 × 1020 cm−3 is achieved. While the incorporation of Ge is almost independent of x, incorporation of O, which acts as an unintentional donor, increases for higher x. Dislocation densities start increasing when doping levels of around 3 × 1019 cm−3 are exceeded. Also photoluminescence intensities begin to drop at these high doping levels. Optical emission of layers with x > 0.25 is found to originate from a defect level 0.9 eV below the indirect bandgap, which is not related to Ge. In the investigated range 0 ≤ x ≤ 0.6, Ge is a suitable donor in c-AlxGa1−xN up to the low 1019 cm−3 range.
  • Item
    Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology
    (Weinheim : Wiley-VCH, 2019) Sammak, Amir; Sabbagh, Diego; Hendrickx, Nico W.; Lodari, Mario; Wuetz, Brian Paquelet; Tosato, Alberto; Yeoh, LaReine; Bollani, Monica; Virgilio, Michele; Schubert, Markus Andreas; Zaumseil, Peter; Capellini, Giovanni; Veldhorst, Menno; Scappucci, Giordano
    Buried-channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 10 5 cm 2 V −1 s −1 ) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top-gate of a dopant-less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 10 11 cm −2 , light effective mass (0.09m e ), and high effective g-factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low-disorder material platform for hybrid quantum technologies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor
    (Washington, DC : American Chemical Society, 2011) Hrauda, N.; Zhang, J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C.; Nanver, L.K.; Moers, J.; Grützmacher, D.; Bauer, G.
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.
  • Item
    Effect of Ge-doping on the short-wave, mid- and far-infrared intersubband transitions in GaN/AlGaN heterostructures
    (Bristol : IOP, 2017) Lim, Carolin B.; Ajay, Akhil; Lähnemann, Jonas; Bougerol, Catherine; Monroy, Eva
    This paper assesses the effects of Ge-doping on the structural and optical (band-to-band and intersubband (ISB)) properties of GaN/AlGaN multi-quantum wells (QWs) designed to display ISB absorption in the short-wave, mid- and far-infrared ranges (SWIR, MIR, and FIR, respectively). The standard c-plane crystallographic orientation is considered for wells absorbing in the SWIR and MIR spectral regions, whereas the FIR structures are grown along the nonpolar m-axis. In all cases, we compare the characteristics of Ge-doped and Si-doped samples with the same design and various doping levels. The use of Ge appears to improve the mosaicity of the highly lattice-mismatched GaN/AlN heterostructures. However, when reducing the lattice mismatch, the mosaicity is rather determined by the substrate and does not show any dependence on the dopant nature or concentration. From the optical point of view, by increasing the dopant density, we observe a blueshift of the photoluminescence in polar samples due to the screening of the internal electric field by free carriers. In the ISB absorption, on the other hand, there is a systematic improvement of the linewidth when using Ge as a dopant for high doping levels, whatever the spectral region under consideration (i.e. different QW size, barrier composition and crystallographic orientation).