Search Results

Now showing 1 - 6 of 6
  • Item
    A novel Deal–Grove-inspired model for fluorine-based plasma jet etching of borosilicate crown optical glass
    (Hoboken, NJ : Wiley Interscience, 2021) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    The Deal–Grove model is a state-of-the-art approach proposed for describing the thermal oxidation of silicon and the oxide thickness over time. In this study, the Deal–Grove concept provided the inspiration for a mathematical model for simulating plasma jet-based dry etching process of borosilicate crown glass (N-BK7®). The whole process is contained in two so-called Deal–Grove parameters, which are extracted from experimental data including local etching depth and surface temperature distribution. The proposed model is extended for the evolution of dynamic etch profiles, and the obtained results are validated experimentally. By establishing such a model, it is possible to predict the effect of the residual layer and surface temperature on the evolution of local etching depths over dwell time.
  • Item
    The multi-photon induced Fano effect
    ([London] : Nature Publishing Group UK, 2021) Litvinenko, K.L.; Le, Nguyen H.; Redlich, B.; Pidgeon, C.R.; Abrosimov, N.V.; Andreev, Y.; Huang, Zhiming; Murdin, B.N.
    The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application.
  • Item
    Taming Ultrafast Laser Filaments for Optimized Semiconductor–Metal Welding
    (Weinheim : Wiley VCH, 2021) Chambonneau, Maxime; Li, Qingfeng; Fedorov, Vladimir Yu.; Blothe, Markus; Schaarschmidt, Kay; Lorenz, Martin; Tzortzakis, Stelios; Nolte, Stefan
    Ultrafast laser welding is a fast, clean, and contactless technique for joining a broad range of materials. Nevertheless, this technique cannot be applied for bonding semiconductors and metals. By investigating the nonlinear propagation of picosecond laser pulses in silicon, it is elucidated how the evolution of filaments during propagation prevents the energy deposition at the semiconductor–metal interface. While the restrictions imposed by nonlinear propagation effects in semiconductors usually inhibit countless applications, the possibility to perform semiconductor–metal ultrafast laser welding is demonstrated. This technique relies on the determination and the precompensation of the nonlinear focal shift for relocating filaments and thus optimizing the energy deposition at the interface between the materials. The resulting welds show remarkable shear joining strengths (up to 2.2 MPa) compatible with applications in microelectronics. Material analyses shed light on the physical mechanisms involved during the interaction. © 2020 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
  • Item
    Violation of a Leggett-Garg inequality with ideal non-invasive measurements
    (London : Nature Publishing Group, 2012) Knee, G.C.; Simmons, S.; Gauger, E.M.; Morton, J.J.L.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Itoh, K.M.; Thewalt, M.L.W.; Briggs, G.A.D.; Benjamin, S.C.
    The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.
  • Item
    A graphene-based hot electron transistor
    (Washington, DC : American Chemical Society, 2013) Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A.D.; Östling, M.; Dabrowski, J.; Lippert, G.; Mehr, W.; Lemme, M.C.
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 104.
  • Item
    X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor
    (Washington, DC : American Chemical Society, 2011) Hrauda, N.; Zhang, J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C.; Nanver, L.K.; Moers, J.; Grützmacher, D.; Bauer, G.
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.