Search Results

Now showing 1 - 10 of 27
Loading...
Thumbnail Image
Item

Fibroblast Response to Nanocolumnar TiO2 Structures Grown by Oblique Angle Sputter Deposition

2021, Kapprell, Uta, Friebe, Sabrina, Grüner, Susann, Grüner, Christoph, Kupferer, Astrid, Rauschenbach, Bernd, Mayr, Stefan G.

Cells are established to sense and respond to the properties, including nano- and microscale morphology, of the substrate they adhere to, which opens up the possibility to tailor bioactivity. With this background, the potential of tilted TiO2 nanostructures grown by oblique angle sputtering to affect fibroblasts with particular focus on inducing anisotropy in cell behavior is explored. By depositing TiO2 at different oblique angles relative to the substrate normal, morphologies, columnar tilt angle, roughness, and distances between neighbored nanocolumns can be adjusted. To assess bioactivity of the resulting structures, L929-mouse fibroblasts are seeded in vitro on TiO2 nanostructured substrates. Angle-dependent movement and velocity distributions of the cells on differently tilted columns and a smooth reference sample are studied. Cell proliferation rates and cell areas are additional factors which provide information about viability and the well-being of cells. It could be shown that the local topography of the surface has an influence on the directed movement of the cells. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Transient spin injection efficiencies at ferromagnet/metal interfaces

2022-10-19, Elliott, Peter, Eschenlohr, Andrea, Chen, Jinghao, Shallcross, Sam, Bovensiepen, Uwe, Dewhurst, John Kay, Sharma, Sangeeta

Spin injection across interfaces driven by ultrashort optical pulses on femtosecond timescales constitutes a new way to design spintronics applications. Targeted utilization of this phenomenon requires knowledge of the efficiency of non-equilibrium spin injection. From a quantitative comparison of ab initio time-dependent density functional theory and interface-sensitive, time-resolved non-linear optical experiment, the spin injection efficiency (SIE) at the Co/Cu(001) interface is determined, and its microscopic origin, i.e., the influence of spin-orbit coupling and the interface electronic structure, is discussed. Moreover, we theoretically predict that the SIE at ferromagnetic–metal interfaces can be optimized through laser pulse and materials parameters, namely the fluence, pulse duration, and substrate material.

Loading...
Thumbnail Image
Item

The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12: A Technologically Relevant Parameter for All-Solid-State Batteries

2020, Philipp, Martin, Gadermaier, Bernhard, Posch, Patrick, Hanzu, Ilie, Ganschow, Steffen, Meven, Martin, Rettenwander, Daniel, Redhammer, Günther J., Wilkening, H. Martin R.

The next-generation of all-solid-state lithium batteries need ceramic electrolytes with very high ionic conductivities. At the same time a negligible electronic conductivity σeon is required to eliminate self-discharge in such systems. A non-negligible electronic conductivity may also promote the unintentional formation of Li dendrites, being currently one of the key issues hindering the development of long-lasting all-solid-state batteries. This interplay is suggested recently for garnet-type Li7La3Zr2O12 (LLZO). It is, however, well known that the overall macroscopic electronic conductivity may be governed by a range of extrinsic factors such as impurities, chemical inhomogeneities, grain boundaries, morphology, and size effects. Here, advantage of Czochralski-grown single crystals, which offer the unique opportunity to evaluate intrinsic properties of a chemically homogeneous matrix, is taken to measure the electronic conductivity σeon. Via long-time, high-precision potentiostatic polarization experiments an upper limit of σeon in the order of 5 × 10−10 S cm−1 (293 K) is estimated. This value is by six orders of magnitude lower than the corresponding total conductivity σtotal = 10−3 S cm−1 of Ga-LLZO. Thus, it is concluded that the high values of σeon recently reported for similar systems do not necessarily mirror intragrain bulk properties of chemically homogenous systems but may originate from chemically inhomogeneous interfacial areas. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Bending as Key Mechanism in the Tactile Perception of Fibrillar Surfaces

2021, Gedsun, Angelika, Sahli, Riad, Meng, Xing, Hensel, René, Bennewitz, Roland

The touching of fibrillar surfaces elicits a broad range of affective reactions, which range from the adverse stinginess of a stiff bristle brush to the pleasant feel of velvet. To study the tactile perception of model fibrillar surfaces, a unique set of samples carrying dense, regular arrays of cylindrical microfibrils with high aspect ratio made from different elastomer materials have been created. Fibril length and material compliance are varied independently such that their respective influence on tactile perception can be elucidated. This work finds that the tactile perception of similarity between samples is dominated by bending of the fibrils under sliding touch. The results demonstrate that variations of material stiffness and of surface structure are not necessarily perceived independently by touch. In the case of fibrillar elastomer surfaces, it is rather the ratio of fibril length and storage modulus which determines fibril bending and becomes the dominant tactile dimension. Visual access to the sample during tactile exploration improves the tactile perception of fibril bendability. Experiments with colored samples show a distraction by color in participants’ decisions regarding tactile similarity only for yellow samples of outstanding brightness.

Loading...
Thumbnail Image
Item

Wet-Spinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering

2020, Cui, Qing, Bell, Daniel Josef, Rauer, Sebastian Bernhard, Wessling, Matthias

Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a core–shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a core–shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ≈800 μm diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Turning a Killing Mechanism into an Adhesion and Antifouling Advantage

2019, Dedisch, Sarah, Obstals, Fabian, los Santos Pereira, Andres, Bruns, Michael, Jakob, Felix, Schwaneberg, Ulrich, Rodriguez‐Emmenegger, Cesar

Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

The Role of Al2O3 ALD Coating on Sn-Based Intermetallic Anodes for Rate Capability and Long-Term Cycling in Lithium-Ion Batteries

2022, Soltani, Niloofar, Abbas, Syed Muhammad, Hantusch, Martin, Lehmann, Sebastian, Nielsch, Kornelius, Bahrami, Amin, Mikhailova, Daria

The electrochemical performances of CoSn2 and Ni3Sn4 as potential anode materials in lithium-ion batteries (LIBs) are investigated using varying thicknesses of an alumina layer deposited by the atomic layer deposition (ALD) technique. Rate capability results showed that at high current densities, Al2O3-coated CoSn2 and Ni3Sn4 electrodes after 10-ALD cycles outperformed uncoated materials. The charge capacities of coated CoSn2 and Ni3Sn4 electrodes are 571 and 134 mAh g−1, respectively, at a high current density of 5 A g−1, while the capacities of uncoated electrodes are 363 and 11 mAh g−1. When the current density is reduced to 1 A g−1, however, the cycling performances of Al2O3-coated CoSn2 and Ni3Sn4 electrodes fade faster after almost 40 cycles than uncoated electrodes. The explanation is found in the composition of the solid-electrolyte interface (SEI), which strongly depends on the current rate. Thus, X-ray photoelectron spectroscopy analysis of SEI layers on coated samples cycles at a low current density of 0.1 Ag−1, revealed organic carbonates as major products, which probably have a low ionic conductivity. In contrast, the SEI of coated materials cycled at 5 Ag−1 consists mostly of mixed inorganic/organic fluorine-rich Al-F and C-F species facilitating a higher ionic transport, which improves electrochemical performance.

Loading...
Thumbnail Image
Item

Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism

2020, Moradi, Somayeh, Naz, Ehsan Saei Ghareh, Li, Guodong, Bandari, Nooshin, Bandari, Vineeth Kumar, Zhu, Feng, Wendrock, Horst, Schmidt, Oliver G.

Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Electronic Doping and Enhancement of n‐Channel Polycrystalline OFET Performance through Gate Oxide Modifications with Aminosilanes

2021, Shin, Nara, Schellhammer, Karl Sebastian, Lee, Min Ho, Zessin, Jakob, Hambsch, Mike, Salleo, Alberto, Ortmann, Frank, Mannsfeld, Stefan C.B.

Self-assembled monolayers (SAMs) are widely employed in organic field-effect transistors to modify the surface energy, surface roughness, film growth kinetics, and electrical surface potential of the gate oxide to control the device's operating voltage. In this study, amino-functionalized SAM molecules are compared to pure alkylsilane SAMS in terms of their impact on the electrical properties of organic field-effect transistors, using the n-type polycrystalline small molecule semiconductor material N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8). In order to understand the electronic impact of the amino groups, the effect of both the number of amino-containing functional groups and the SAM molecular length are systematically studied. Though amino-functionalized SAM materials have been studied previously, this study is, for the first time, able to shed light on the nature of the doping effect that occurs when the gate oxide is treated with polar aminosilane materials. By a comprehensive theoretical study of the interface on the molecular level, it is shown that the observed shift in the threshold voltage is caused by free charges, which are attracted to the PTCDI-C8 and are stabilized there by protonated aminosilanes. This attraction and the voltage shift can be systematically tuned by varying the length of the neutral terminal chain of the aminosilane. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Self‐Patterning of Multifunctional Heusler Membranes by Dewetting

2021, Lünser, Klara, Diestel, Anett, Nielsch, Kornelius, Fähler, Sebastian

Ni-Mn-based Heusler alloys are an emerging class of materials which enable actuation by (magnetic) shape memory effects, magnetocaloric cooling, and thermomagnetic energy harvesting. Multifunctional materials have a particular advantage for miniaturization since their functionality is already built within the material. However, often complex microtechnological processing is required to bring these materials into shape. Here, self-organized formation of single crystalline membranes having arrays of rectangular holes with high aspect ratio is demonstrated. Dewetting avoids the need for complicated processing and allows to prepare freestanding Ni–Mn–Ga–Co membranes. These membranes are martensitic and magnetic, and their functional properties are not disturbed by self-patterning. Feature sizes of these membranes can be tailored by film thickness and heat treatment, and the tendencies can be explained with dewetting. As an outlook, the advantages of these multifunctional membranes for magnetocaloric and thermomagnetic microsystems are sketched. © 2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH