Search Results

Now showing 1 - 10 of 147
  • Item
    Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
    (Lausanne : Frontiers Media, 2018) Ryabchykov, Oleg; Popp, Jürgen; Bocklitz, Thomas W.
    Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis.
  • Item
    Single molecule level plasmonic catalysis – a dilution study of p-nitrothiophenol on gold dimers
    (Cambridge : Soc., 2015) Zhang, Zhenglong; Deckert-Gaudig, Tanja; Singh, Pushkar; Deckert, Volker
    Surface plasmons on isolated gold dimers can initiate intermolecular reactions of adsorbed p-nitrothiophenol. At the single molecule level when dimerization is not possible an intramolecular reaction can be observed. Experimental evidence indicates that plasmon-induced hot electrons provide the required activation energy.
  • Item
    Electrochemical growth mechanism of nanoporous platinum layers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Stanca, Sarmiza-Elena; Vogt, Oliver; Zieger, Gabriel; Ihring, Andreas; Dellith, Jan; Undisz, Andreas; Rettenmayr, Markus; Schmidt, Heidemarie
    Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.
  • Item
    Fluorosolvatochromism of furanyl- and thiophenyl-substituted acetophenones
    (London : RSC, 2015) Friebe, Nadine; Schreiter, Katja; Kübel, Joachim; Dietzek, Benjamin; Moszner, Norbert; Burtscher, Peter; Oehlke, Alexander; Spange, Stefan
    A series of para-substituted acetophenones bearing a furanyl or a thiophenyl moiety show a large Stokes-shift, which is a function of various solvent properties. Photophysical properties such as emission lifetime of the compounds have been determined using time-correlated-single photon counting to secure the intrinsic fluorescence behaviour. The solvent dependent position of the UV/Vis emission band [small nu, Greek, tilde]max,em of the compounds has been measured in 26 various solvents. The influence of the solvent on [small nu, Greek, tilde]max,em is of very complex nature and mathematically analysed by multiple square linear solvation energy (LSE)-correlation analysis using Catalán's four-solvent parameter set. Solvent acidity has a strong influence on the bathochromic shift of 2,5-disubstituted furan derivatives compared to the non-5-substituted furan and thiophene derivatives, which show a contrary behaviour. Therefore, the 5-cyanofuranyl-substituted acetophenone derivative is useful as a probe for measuring environmental properties by fluorescence spectroscopy.
  • Item
    Energy-Dependent RBS Channelling Analysis of Epitaxial ZnO Layers Grown on ZnO by RF-Magnetron Sputtering
    (Basel : MDPI, 2019) Wittkämper, Florian; Bikowski, André; Ellmer, Klaus; Gärtner, Konrad; Wendler, Elke
    The transparent conducting oxides ZnO and ZnO:Al are interesting materials for a wide range of applications. Several of these applications need a large area, single crystalline, and specially doped thin layers. A common technique for the fabrication of those layers is RF (radio frequency) -magnetron sputtering. The investigation of the crystal quality of such layers requires methods of analysis that are destruction free and that are able to obtain information about the concentration and type of defects versus depth. One such option is the Rutherford backscattering spectroscopy (RBS) in channelling mode. In this work, we exploit the channelling effect and its energy dependence, which are sensitive to the type of defects. By using appropriate software and measuring RBS channelling spectra with different beam energies, we were able to determine the depth distribution of point defects and dislocation loops. The presence of dislocation loops was proven using other previously applied analysis methods. The main advantage of RBS in channelling mode is the quantification of point defects, which can be important for defining the electrical and optical properties of such layers. The technique demonstrated is applicable to other defective crystals or thin crystalline layers. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles
    (Basel : Molecular Diversity Preservation International (MDPI), 2015) Zaloga, Jan; Janko, Christina; Agarwal, Rohit; Nowak, Johannes; Müller, Robert; Boccaccini, Aldo R.; Lee, Geoffrey; Odenbach, Stefan; Lyer, Stefan; Alexiou, Christoph
    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.
  • Item
    Hole injection dynamics from two structurally related Ru-bipyridine complexes into NiOx is determined by the substitution pattern of the ligands
    (Cambridge : RSC Publ., 2015) Bräutigam, Maximilian; Kübel, Joachim; Schulz, Martin; Vos, Johannes G.; Dietzek, Benjamin
    The dyes bis[2,2′-bipyridine][4,4′-dicarboxy-2,2′-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(bpy)2dcb](PF6)2 (Ru1), and tris[4,4′-bis(ethylcarboxy)-2,2′-bipyridine]ruthenium(II) dihexafluorophosphate, [Ru(dceb)3](PF6)2 (Ru2), attached to NiOx nanoparticle films were investigated using transient absorption and luminescence spectroscopy. In acetonitrile solution the dyes reveal very similar physical and chemical properties, i.e. both dyes exhibit comparable ground state and long-lived, broad excited state absorption. However, when immobilized onto a NiOx surface the photophysical properties of the two dyes differ significantly. For Ru1 luminescence is observed, which decays within 18 ns and ultrafast transient absorption measurements do not show qualitative differences from the photophysics of Ru1 in solution. In contrast to this the luminescence of photoexcited Ru2 on NiOx is efficiently quenched and the ultrafast transient absorption spectra reveal the formation of oxidized nickel centres overlaid by the absorption of the reduced dye Ru2 with a characteristic time-constant of 18 ps. These findings are attributed to the different localization of the initially photoexcited state in Ru1 and Ru2. Due to the inductive effect (−I) of the carboxylic groups, the lowest energy excited state in Ru1 is localized on the dicarboxy-bipyridine ligand, which is bound to the NiOx surface. In Ru2, on the other hand, the initially populated excited state is localized on the ester-substituted ligands, which are not bound to the semiconductor surface. Hence, the excess charge density that is abstracted from the Ru-ion in the metal-to-ligand charge-transfer transition is shifted away from the NiOx surface, which ultimately facilitates hole transfer into the semiconductor.
  • Item
    Application of molecular SERS nanosensors: where we stand and where we are headed towards?
    (Berlin ; Heidelberg : Springer, 2020) Jahn I.J.; Mühlig A.; Cialla-May D.
    Molecular specific and highly sensitive detection is the driving force of the surface-enhanced Raman spectroscopy (SERS) community. The technique opens the window to the undisturbed monitoring of cellular processes in situ or to the quantification of small molecular species that do not deliver Raman signals. The smart design of molecular SERS nanosensors makes it possible to indirectly but specifically detect, e.g. reactive oxygen species, carbon monoxide or potentially toxic metal ions. Detection schemes evolved over the years from simple metallic colloidal nanoparticles functionalized with sensing molecules that show uncontrolled aggregation to complex nanostructures with magnetic properties making the analysis of complex environmental samples possible. The present article gives the readership an overview of the present research advancements in the field of molecular SERS sensors, highlighting future trends. © 2020, The Author(s).
  • Item
    Shape-Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions
    (Weinheim : Wiley-VCH, 2021) Meurer, Josefine; Hniopek, Julian; Bätz, Thomas; Zechel, Stefan; Enke, Marcel; Vitz, Jürgen; Schmitt, Michael; Popp, Jürgen; Hager, Martin D.; Schubert, Ulrich S.
    A new shape-memory polymer is presented, in which both the stable phase as well as the switching unit consist of two different metal complexes. Suitable metal ions, which simultaneously form labile complexes with histidine and stable ones with terpyridine ligands, are identified via isothermal titration calorimetry (ITC) measurements. Different copolymers are synthesized, which contain butyl methacrylate as the main monomer and the metal-binding ligands in the side chains. Zn(TFMS)2 and NiCl2 are utilized for the dual crosslinking, resulting in the formation of metallopolymer networks. The switching temperature can simply be tuned by changing the composition as well as by the choice of the metal ion. Strain fixity rates (about 99%) and very high strain recovery rates (up to 95%) are achieved and the mechanism is revealed using different techniques such as Raman spectroscopy. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature
    (Basel : MDPI, 2021) Ben-Miled, Aziz; Nabiyan, Afshin; Wondraczek, Katrin; Schacher, Felix H.; Wondraczek, Lothar
    A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate-co-spiropyran acrylate) (P (TEGA-co-SPA)) copolymer containing 12–14% of spiropyran at the silica–water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA-co-SPA)-rich wetting layer growing on the sensor, from which we deduced the characteristic coil-to-globule transition temperature, corresponding to the lower critical solution temperature (LCST) of the PTEGA part. We show that the coil-to-globule transition of the adsorbed copolymer being exposed to visible or UV light shifts to lower LCST as compared to the bulk solution: the transition temperature determined acoustically on the surface is 4 to 8 K lower than the cloud point temperature reported by UV/VIS spectroscopy in aqueous solution. We attribute our findings to non-equilibrium effects caused by confinement of the copolymer chains on the surface. Thermal stimuli and light can be used to manipulate the film formation process and the film’s conformational state, which affects its subsequent response behavior.