Search Results

Now showing 1 - 10 of 10
  • Item
    Crystal growth and thermodynamic investigation of Bi2M2+O4 (M = Pd, Cu)
    (London : RSC, 2021) Wolff, Nora; Klimm, Detlef; Habicht, Klaus; Fritsch, Katharina
    Phase equilibria that are relevant for the growth of Bi2MO4 have been studied experimentally, and the ternary phase diagrams of Bi2O3–PdO2–Pd and Bi2O3–Cu2O–CuO and its isopleth section Bi2O3–CuO were redetermined. It is shown that every melting and crystallization process is always accompanied by a redox process at the phase boundary and that for both title compounds, the valence of the transition metal is lowered during melting. Vice versa, during crystal growth, O2 must be transported through the melt to the phase boundary. Based on these new insights provided by our thermodynamic studies, Bi2CuO4 single crystals with a length of up to 7 cm and a diameter of 6 mm were grown by the OFZ technique to be used for investigations of magnetic, electronic and thermal transport properties. The grown crystals were characterized by powder X-ray diffraction, Laue, magnetization and specific heat measurements.
  • Item
    Solvent-antisolvent interactions in metal halide perovskites
    (Cambridge : Soc., 2023) Bautista-Quijano, Jose Roberto; Telschow, Oscar; Paulus, Fabian; Vaynzof, Yana
    The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
  • Item
    Morphology and crystallization of polypropylene/microfibrillated cellulose composites
    (Bangkok : King Mongkut’s University of Technology, 2014) Thanomchat, Sarit; Srikulkit, Kawee; Suksut, Buncha; Schlarb, Alois Karl
    Microfibrillated cellulose (MFC) was prepared by controlling the re-precipitation of cellulose prepared in the mixture form of NaOH/Urea solubilized microcrystalline cellulose (MCC) and starch. The cellulose re-precipitation was carried-out in an HCl bath, resulting in a MFC form having relatively lower crystallinity than MCC. The XRD pattern of MFC indicated the partially crystalline structure arising from the imperfect orientation of a cellulose chain obstructed by a starch molecule in the precipitation step. Interestingly, the MFC morphology exhibited a web-like structure with a diameter in the range of 10-20 nm. The water retention value of MFC was extraordinarily high due to its extremely small diameter having high surface area. Further, surface silanization of MFC with organosilane was carried out. Then, the modified MFC was melt-mixed with polypropylene (PP) matrix via a simple melt mixing technique. The morphology and crystallization of the PP/MFC composites were measured. The morphology of organosilane treated MFC exhibited agglomeration of 10 microns in diameter with layered structures arising from the packing of microfibrils. The FTIR spectra showed hydrophobic characteristics of treated MFC observed by the disappearance of original cellulose hydroxyl group and bound water. The crystallinity of treated MFC increased when compared to the untreated MFC, indicating that cellulose chains of unmodified MFC underwent re-orientation occurring in the modification step due to its high crystallinity characteristic. For the PP/MFC-composite containing MFC loading, faster crystallization and higher spherulite growth rate, in case of higher MFC loading, were observed. In addition, the spherulite size decreased with an increase in the crystallization temperature. However, the degree of crystallinity was fairly independent on the MFC-loading. Therefore it can be concluded that the addition of MFC might enable shorter cycle times, resulting in cheaper processing cost in a view point of polymer processing.
  • Item
    Structure formation of ultrathin PEO films at solid interfaces-complex pattern formation by dewetting and crystallization
    (Basel : MDPI AG, 2013) Braun, H.-G.; Meyer, E.
    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.
  • Item
    Effect of Molar Mass on Critical Specific Work of Flow for Shear-Induced Crystal Nucleation in Poly (l-Lactic Acid)
    (Basel : MDPI, 2021) Du, Mengxue; Jariyavidyanont, Katalee; Kühnert, Ines; Boldt, Regine; Androsch, René
    The concept of specific work of flow has been applied for the analysis of critical shearing conditions for the formation of crystal nuclei in poly (l-lactic acid) (PLLA). Systematic variation in both time and rate of shearing the melt in a parallel-plate rheometer revealed that these parameters are interconvertible regarding the shear-induced formation of crystal nuclei; that is, low shear rate can be compensated for by increasing the shear time and vice versa. This result supports the view that critical shearing conditions can be expressed by a single quantity, providing additional options for tailoring polymer processing routes when enhanced nuclei formation is desired/unwanted. Analysis of PLLA of different mass-average molar masses of 70, 90, 120, and 576 kDa confirmed improved shear-induced crystal nucleation for materials of higher molar mass, with critical specific works of flow, above which shear-induced nuclei formation occurs, of 550, 60, 25, and 5 kPa, respectively.
  • Item
    Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers
    (Basel : MDPI, 2018) Yang, Bo; Wang, Rui; Ma, Hui-Ling; Li, Xiaolu; Brünig, Harald; Dong, Zhenfeng; Qi, Yue; Zhang, Xiuqin
    Poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blend as-spun fibers (50/50, wt.%) were prepared by melt spinning. Structure mediation under temperature and stress and properties of poly(l-lactic acid)/poly(d-lactic acid)(PLLA/PDLA) as-spun fibers were investigated by wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). The results show that highly oriented stereocomplex (SC) crystals can be formed in PLLA/PDLA blend fibers drawn at 60 °C and annealed at 200 °C. However, at drawn temperature of 80 °C, only lower oriented SC crystals can be formed. For PLLA/PDLA blend fibers drawn twice at 60 °C (PLLA/PDLA-60-2), the crystallinity of SC crystals increases with annealing temperature in the range of 200 to 215 °C, while the degree of orientation decreases slightly. When the annealing temperature is 210 °C, the crystallinity and orientation of SC crystals in PLLA/PDLA-60-2 fibers reach 51% and −0.39, respectively. Moreover, PLLA/PDLA-60-2-210 fibers exhibit excellent heat-resistant property even at 200 °C. The results indicate that the oriented PLLA/PDLA blend fibers with high SC crystals content can be regulated in a short time.
  • Item
    A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide
    (Amsterdam [u.a.] : Elsevier Science, 2021) Huang, Ying; Müller, Michael Thomas; Boldt, Regine; Zschech, Carsten; Gohs, Uwe; Wießner, Sven
    Biodegradable polylactide/masticated natural rubber (PLA/mNR) blends were prepared by electron induced reactive processing (EIReP) without using any chemical additives. The PLA/mNR blends showed droplet-matrix morphology with decreased mNR particle size after EIReP treatment. The absolute value of complex viscosity and storage modulus increased significantly for the EIReP modified blends, suggesting the improved melt strength and elasticity. The crystallization investigation showed that the cold crystallization peak of PLA phase gradually disappeared after EIReP modification. Instead, the crystallization peak arose during melt cooling process. Consequently, the crystallinity of PLA phase increased from 6.2% to 39.0% as the mNR content increased from 0 to 20 wt%. It was found that the softening temperature of PLA examined by dynamic mechanical analysis increased effectively with the characters of higher modulus compared to the non-modified blends. The EIReP modified blends exhibited excellent mechanical properties with 7-fold increase of impact toughness compared with neat PLA, implying a superior interfacial adhesion and chain interactions between the two polymer phases. Furthermore, the thermogravimetric analysis demonstrated that the thermal stability was slightly enhanced for the EIReP modified blends.
  • Item
    Poly(acrylonitrile-co-butadiene) as polymeric crosslinking accelerator for sulphur network formation
    (London [u.a.] : Elsevier, 2020) Hait, Sakrit; Valentín, Juan López; Jiménez, Antonio González; Ortega, Pilar Bernal; Ghosh, Anik Kumar; Stöckelhuber, Klaus Werner; Wießner, Sven; Heinrich, Gert; Das, Amit
    The major controlling factors that determine the various mechanical properties of an elastomer system are type of chemical crosslinking and crosslink density of the polymer network. In this study, a catalytic amount of acrylonitrile butadiene copolymer (NBR) was used as a co-accelerator for the curing of polybutadiene (BR) elastomer. After the addition of this copolymer along with other conventional sulphur ingredients in polybutadiene compounds, a clear and distinct effect on the curing and other physical characteristics was noticed. The crosslinking density of BR was increased, as evidenced by rheometric properties, solid-state NMR and swelling studies. The vulcanization kinetics study revealed a substantial lowering of the activation energy of the sulphur crosslinking process when acrylonitrile butadiene copolymer was used in the formulation. The compounds were also prepared in the presence of carbon black and silica, and it was found that in the carbon black filled system the catalytic effect of the NBR was eminent. The effect was not only reflected in the mechanical performance but also the low-temperature crystallization behavior of BR systems was altered. © 2020 The AuthorsMaterials science; Materials chemistry; Crosslinking accelerator; Sulphur network; Solid state NMR; Curing kinetics; Activation energy; Acrylonitrile butadiene; Polybutadiene; Low-temperature; Crystallization. © 2020 The Authors
  • Item
    Process induced skin-core morphology in injection molded polyamide 66
    (Basel : MDPI, 2020) Spoerer, Yvonne; Androsch, René; Jehnichen, Dieter; Kuehnert, Ines
    Polyamide 66 (PA 66) was injection-molded to obtain samples with a structure gradient between skin and core, as it was revealed by analysis of the semi-crystalline morphology using polarized-light optical microscopy (POM). Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) were employed to characterize thin sections with a thickness in the order of magnitude of 50 µm, allowing detection of crystals of different perfection, as a function of the distance from the surface. It was found that the transparent and non-spherulitic skin layer contains rather imperfect α-crystals while the perfection of α-crystals continuously increases with extending distance from the surface. Since variation of the molding conditions allows tailoring the skin-core morphology, the present study was performed to suggest a reliable route to map the presence of specific semi-crystalline morphologies in such samples
  • Item
    Enthalpy relaxation, crystal nucleation and crystal growth of biobased poly(butylene isophthalate)
    (Basel : MDPI, 2020) Quattrosoldi, Silvia; Androsch, René; Janke, Andreas; Soccio, Michelina; Lotti, Nadia
    The crystallization behavior of fully biobased poly(butylene isophthalate) (PBI) has been investigated using calorimetric and microscopic techniques. PBI is an extremely slow crystallizing polymer that leads, after melt-crystallization, to the formation of lamellar crystals and rather large spherulites, due to the low nuclei density. Based upon quantitative analysis of the crystal-nucleation behavior at low temperatures near the glass transition, using Tammann’s two-stage nuclei development method, a nucleation pathway for an acceleration of the crystallization process and for tailoring the semicrystalline morphology is provided. Low-temperature annealing close to the glass transition temperature (Tg) leads to the formation of crystal nuclei, which grow to crystals at higher temperatures, and yield a much finer spherulitic superstructure, as obtained after direct melt-crystallization. Similarly to other slowly crystallizing polymers like poly(ethylene terephthalate) or poly(l-lactic acid), low-temperature crystal-nuclei formation at a timescale of hours/days is still too slow to allow non-spherulitic crystallization. The interplay between glass relaxation and crystal nucleation at temperatures slightly below Tg is discussed.