Search Results

Now showing 1 - 9 of 9
  • Item
    High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells
    (Cambridge : Royal Society of Chemistry, 2019) Rüger J.; Mondol A.S.; Schie I.W.; Popp J.; Krafft C.
    High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages. © 2019 The Royal Society of Chemistry.
  • Item
    Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization
    (Cambridge : RSC, 2019) Pachfule, Pradip; Acharjya, Amitava; Roeser, Jérôme; Sivasankaran, Ramesh P.; Ye, Meng-Yang; Brückner, Angelika; Schmidt, Johannes; Thomas, Arne
    Covalent organic frameworks (COFs) are promising materials for applications in photocatalysis, due to their conjugated, porous and chemically stable architectures. Alternating electron donor-acceptor-type structures are known to enhance charge carrier transport mobility and stability in polymers and are therefore also interesting building units for COFs used as photocatalysts but also as photoinitiator. In this work, two donor-acceptor COFs using electron deficient 4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)trianiline and electron rich thiophene-based thieno[3,2-b]thiophene-2,5-dicarbaldehyde or [2,2′-bithiophene]-5,5′-dicarbaldehyde linkers are presented. The resulting crystalline and porous COFs have been applied as photoinitiator for visible light induced free radical polymerization of methyl methacrylate (MMA) to poly-methyl methacrylate (PMMA). These results pave the way to the development of robust and heterogeneous systems for photochemistry that offers the transfer of radicals induced by visible light. © The Royal Society of Chemistry 2019.
  • Item
    Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer
    (Cambridge : RSC, 2021) Zalibera, Michal; Ziegs, Frank; Schiemenz, Sandra; Dubrovin, Vasilii; Lubitz, Wolfgang; Savitsky, Anton; Deng, Shihu H.M.; Wang, Xue-Bin; Advoshenko, Stanislav M.; Popov, Alexey A.
    We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.
  • Item
    A general approach for all-visible-light switching of diarylethenes through triplet sensitization using semiconducting nanocrystals
    (London [u.a.] : RSC, 2022) Hou, Lili; Larsson, Wera; Hecht, Stefan; Andréasson, Joakim; Albinsson, Bo
    Coupling semiconducting nanocrystals (NCs) with organic molecules provides an efficient route to generate and transfer triplet excitons. These excitons can be used to power photochemical transformations such as photoisomerization reactions using low energy radiation. Thus, it is desirable to develop a general approach that can efficiently be used to control photoswitches using all-visible-light aiming at future applications in life- and materials sciences. Here, we demonstrate a simple ‘cocktail’ strategy that can achieve all-visible-light switchable diarylethenes (DAEs) through triplet energy transfer from the hybrid of CdS NCs and phenanthrene-3-carboxylic acid, with high photoisomerization efficiency and improved fatigue resistance. The size-tunable excitation energies of CdS NCs make it possible to precisely match the clear spectral window of the relevant DAE photoswitch. We demonstrate reversible all-visible-light photoisomerization of a series of DAE derivatives both in the liquid and solid state, even in the presence of oxygen. Our general strategy is promising for fabrication of all-visible-light activated optoelectronic devices as well as memories, and should in principle be adaptable to photopharmacology.
  • Item
    Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications
    (Washington, DC : ACS Publications, 2017) Chakrabortty, Sabyasachi; Agrawalla, Bikram Keshari; Stumper, Anne; Vegi, Naidu M.; Fischer, Stephan; Reichardt, Christian; Kögler, Michael; Dietzek, Benjamin; Feuring-Buske, Michaela; Buske, Christian; Rau, Sven; Weil, Tanja
    Organelle-targeted photosensitization represents a promising approach in photodynamic therapy where the design of the active photosensitizer (PS) is very crucial. In this work, we developed a macromolecular PS with multiple copies of mitochondria-targeting groups and ruthenium complexes that displays highest phototoxicity toward several cancerous cell lines. In particular, enhanced anticancer activity was demonstrated in acute myeloid leukemia cell lines, where significant impairment of proliferation and clonogenicity occurs. Finally, attractive two-photon absorbing properties further underlined the great significance of this PS for mitochondria targeted PDT applications in deep tissue cancer therapy.
  • Item
    Competition between excited state proton and OH- transport via a short water wire: Solvent effects open the gate
    (London [u.a.] : Royal Society of Chemistry, 2014) Bekçioǧlu, G.; Allolio, C.; Ekimova, M.; Nibbering, E.T.J.; Sebastiani, D.
    We investigate the acid-base proton exchange reaction in a microsolvated bifunctional chromophore by means of quantum chemical calculations. The UV/vis spectroscopy shows that equilibrium of the keto-and enol-forms in the electronic ground state is shifted to the keto conformation in the excited state. A previously unknown mechanism involving a hydroxide ion transport along a short water wire is characterized energetically, which turns out to be competitive with the commonly assumed proton transport. Both mechanisms are shown to have a concerted character, as opposed to a step-wise mechanism. The alternative mechanism of a hydrogen atom transport is critically examined, and evidence for strong solvent dependence is presented. Specifically, we observe electrostatic destabilization of the corresponding πσ* state by the aqueous solvent. As a consequence, no conical intersections are found along the reaction pathway.
  • Item
    Out of the lab and into the bathroom: Evening short-term exposure to conventional light suppresses melatonin and increases alertness perception
    (Basel : MDPI AG, 2013) Wahnschaffe, A.; Haedel, S.; Rodenbeck, A.; Stoll, C.; Rudolph, H.; Kozakov, R.; Schoepp, H.; Kunz, D.
    Life in 24-h society relies on the use of artificial light at night that might disrupt synchronization of the endogenous circadian timing system to the solar day. This could have a negative impact on sleep-wake patterns and psychiatric symptoms. The aim of the study was to investigate the influence of evening light emitted by domestic and work place lamps in a naturalistic setting on melatonin levels and alertness in humans. Healthy subjects (6 male, 3 female, 22-33 years) were exposed to constant dim light (<10 lx) for six evenings from 7:00 p.m. to midnight. On evenings 2 through 6, 1 h before habitual bedtime, they were also exposed to light emitted by 5 different conventional lamps for 30 min. Exposure to yellow light did not alter the increase of melatonin in saliva compared to dim light baseline during (38 ± 27 pg/mL vs. 39 ± 23 pg/mL) and after light exposure (39 ± 22 pg/mL vs. 44 ± 26 pg/mL). In contrast, lighting conditions including blue components reduced melatonin increase significantly both during (office daylight white: 25 ± 16 pg/mL, bathroom daylight white: 24 ± 10 pg/mL, Planon warm white: 26 ± 14 pg/mL, hall daylight white: 22 ± 14 pg/mL) and after light exposure (office daylight white: 25 ± 15 pg/mL, bathroom daylight white: 23 ± 9 pg/mL, Planon warm white: 24 ± 13 pg/mL, hall daylight white: 22 ± 26 pg/mL). Subjective alertness was significantly increased after exposure to three of the lighting conditions which included blue spectral components in their spectra. Evening exposure to conventional lamps in an everyday setting influences melatonin excretion and alertness perception within 30 min.
  • Item
    Local protonation control using plasmonic activation
    (Cambridge : RSC, 2001) Singh, P.; Deckert, V.
    Localized protonation of 4-mercaptopyridine (4-MPY), activated by light in the presence of silver nanoparticles is monitored under ambient conditions using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). The reaction can be controlled by the excitation wavelength and the atmospheric conditions, thus, providing a tool for site-specific control of protonation.
  • Item
    Room temperature synthesis of an amorphous MoS2 based composite stabilized by N-donor ligands and its light-driven photocatalytic hydrogen production
    (London : RSC Publishing, 2015) Niefind, Felix; Djamil, John; Bensch, Wolfgang; Srinivasan, Bikshandarkoil R.; Sinev, Ilya; Grünert, Wolfgang; Deng, Mao; Kienle, Lorenz; Lotnyk, Andriy; Mesch, Maria B.; Senker, Jürgen; Dura, Laura; Beweries, Torsten
    Herein an entirely new and simple room temperature synthesis of an amorphous molybdenum sulfide stabilized by complexing ammonia and hydrazine is reported. The resulting material exhibits an outstanding activity for the photocatalytic hydrogen evolution driven by visible light. It is chemically stable during the reaction conditions of the photocatalysis and shows unusual thermal stability up to 350 °C without crystallization. The new material is obtained by a reaction of solid ammonium tetrathiomolybdate and gaseous hydrazine. In the as-prepared state Mo atoms are surrounded by μ2-briding S2−, NH3 and hydrazine, the latter being coordinated to Mo(IV) in a bridging or side-on mode. Heating at 450 °C or irradiation with an electron beam generates nanosized crystalline MoS2 slabs. The two modes for crystallization are characterized by distinct mechanisms for crystal growth. The stacking of the slabs is low and the material exhibits a pronounced turbostratic disorder. Heat treatment at 900 °C yields more ordered MoS2 but structural disorder is still present. The visible-light driven hydrogen evolution experiments evidence an outstanding performance of the as-prepared sample. The materials were thoroughly characterized by optical spectroscopy, chemical analysis, in situ HRTEM, XRD, 1H and 15N solid-state NMR, XPS, and thermal analysis.