Search Results

Now showing 1 - 2 of 2
  • Item
    Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering
    (Columbus, Ohio : American Chemical Society, 2016) Cowcher, David P.; Deckert-Gaudig, Tanja; Brewster, Victoria L.; Ashton, Lorna; Deckert, Volker; Goodacre, Royston
    The correct glycosylation of biopharmaceutical glycoproteins and their formulations is essential for them to have the desired therapeutic effect on the patient. It has recently been shown that Raman spectroscopy can be used to quantify the proportion of glycosylated protein from mixtures of native and glycosylated forms of bovine pancreatic ribonuclease (RNase). Here we show the first steps toward not only the detection of glycosylation status but the characterization of glycans themselves from just a few protein molecules at a time using tip-enhanced Raman scattering (TERS). While this technique generates complex data that are very dependent on the protein orientation, with the careful development of combined data preprocessing, univariate and multivariate analysis techniques, we have shown that we can distinguish between the native and glycosylated forms of RNase. Many glycoproteins contain populations of subtly different glycoforms; therefore, with stricter orientation control, we believe this has the potential to lead to further glycan characterization using TERS, which would have use in biopharmaceutical synthesis and formulation research.
  • Item
    Plasmon induced deprotonation of 2-mercaptopyridine
    (Cambridge : Royal Society of Chemistry, 2020) Singh P.; Deckert-Gaudig T.; Zhang Z.; Deckert V.
    Surface plasmons can provide a novel route to induce and simultaneously monitor selective bond formation and breakage. Here pH-induced protonation, followed by plasmon-induced deprotonation of 2-mercaptopyridine was investigated using surface- and tip-enhanced Raman scattering (SERS and TERS). A large difference in the deprotonation rate between SERS and TERS will be demonstrated and discussed with respect to hot-spot distribution. © 2020 The Royal Society of Chemistry.