Search Results

Now showing 1 - 4 of 4
  • Item
    Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16
    (London [u.a.] : Nature Publishing Group, 2018-12-5) Sagwal, Sanjeev Kumar; Pasqual-Melo, Gabriella; Bodnar, Yana; Gandhirajan, Rajesh Kumar; Bekeschus, Sander
    Malignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants. We report synergistic cytotoxicity of doxorubicin and epirubicin, and additive toxicity of oxaliplatin with plasma exposure in coefficient of drug interaction analysis. The combination treatment led to an increased DNA damage response (increased phosphorylation of ATM, γ-H2AX foci, and micronuclei formation). There was also an enhanced secretion of immunogenic cell death markers ATP and CXCL10 in cell culture supernatants following combination treatment. The observed synergistic effects in tumor cells was due to enhanced intracellular doxorubicin accumulation via upregulation of the organic cationic transporter SLC22A16 by plasma treatment. The doxorubicin uptake was reversed by pretreating cells with antioxidants or calcium influx inhibitor BTP2. Endoribonuclease-prepared siRNAs (esiRNA)-mediated knockdown of SLC22A16 inhibited the additive cytotoxic effect in tumor cells. SK-MEL 28 and THP-1 monocytes co-culture led to greater THP-1 cell migration and SK-MEL-28 cytotoxicity when compared with controls. Taken together, we propose pro-oxidant treatment modalities to sensitize chemoresistant melanoma cells towards subsequent chemotherapy, which may serve as therapeutic strategy in combination treatment in oncology.
  • Item
    The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB
    (London : BioMed Central, 2019) Formicola, Beatrice; Dal, Magro, Roberta; Montefusco-Pereira, Carlos V.; Lehr, Claus‑Michael; Koch, Marcus; Russo, Laura; Grasso, Gianvito; Deriu, Marco A.; Danani, Andrea; Bourdoulous, Sandrine; Re, Francesca
    We designed liposomes dually functionalized with ApoE-derived peptide (mApoE) and chlorotoxin (ClTx) to improve their blood-brain barrier (BBB) crossing. Our results demonstrated the synergistic activity of ClTx-mApoE in boosting doxorubicin-loaded liposomes across the BBB, keeping the anti-tumour activity of the drug loaded: mApoE acts promoting cellular uptake, while ClTx promotes exocytosis of liposomes. © 2019 The Author(s).
  • Item
    Cytotoxicity of dendrimers
    (Basel : MDPI, 2019) Janaszewska, Anna; Lazniewska, Joanna; Trzepiński, Przemysław; Klajnert-Maculewicz, Barbara
    Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae
    (Chichester : John Wiley and Sons Ltd, 2020) Kiefer, R.; Jurisic, M.; Dahlem, C.; Koch, M.; Schmitt, M.J.; Kiemer, A.K.; Schneider, M.; Breinig, F.
    Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.