Search Results

Now showing 1 - 2 of 2
  • Item
    Morphology, Optical Properties and Photocatalytic Activity of Photo- and Plasma-Deposited Au and Au/Ag Core/Shell Nanoparticles on Titania Layers
    (Basel : MDPI, 2018-7-6) Müller, Alexander; Peglow, Sandra; Karnahl, Michael; Kruth, Angela; Junge, Henrik; Brüser, Volker; Scheu, Christina
    Titania is a promising material for numerous photocatalytic reactions such as water splitting and the degradation of organic compounds (e.g., methanol, phenol). Its catalytic performance can be significantly increased by the addition of co-catalysts. In this study, Au and Au/Ag nanoparticles were deposited onto mesoporous titania thin films using photo-deposition (Au) and magnetron-sputtering (Au and Au/Ag). All samples underwent comprehensive structural characterization by grazing incidence X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Nanoparticle distributions and nanoparticle size distributions were correlated to the deposition methods. Light absorption measurements showed features related to diffuse scattering, the band gap of titania and the local surface plasmon resonance of the noble metal nanoparticles. Further, the photocatalytic activities were measured using methanol as a hole scavenger. All nanoparticle-decorated thin films showed significant performance increases in hydrogen evolution under UV illumination compared to pure titania, with an evolution rate of up to 372 μL H2 h−1 cm−2 representing a promising approximately 12-fold increase compared to pure titania.
  • Item
    Time Optimization of Seed-Mediated Gold Nanotriangle Synthesis Based on Kinetic Studies
    (Basel : MDPI, 2021) Podlesnaia, Ekaterina; Csáki, Andrea; Fritzsche, Wolfgang
    The synthesis of shape-anisotropic plasmonic nanoparticles such as gold nanotriangles is of increasing interest. These particles have a high potential for applications due to their notable optical properties. A key challenge of the synthesis is usually the low reproducibility. Even the optimized seed-based methods often lack in the synthesis yield or are labor- and time-consuming. In this work, a seed-mediated synthesis with high reproducibility is replicated in order to determine the necessary reaction time for each step. Online monitoring of the reaction mixtures by UV–VIS spectroscopy is used as a powerful tool to track the evolution of the synthesis. The kinetics of the individual stages is elucidated by real-time investigations. As a consequence, the complete synthesis could be optimized and can now be realized in a single day instead of three without any loss in the resulting sample quality.