Search Results

Now showing 1 - 4 of 4
  • Item
    Catechol Containing Polyelectrolyte Complex Nanoparticles as Local Drug Delivery System for Bortezomib at Bone Substitute Materials
    (Basel : MDPI, 2020) Vehlow, David; Wong, Jeremy P.H.; Urban, Birgit; Weißpflog, Janek; Gebert, Annett; Schumacher, Matthias; Gelinsky, Michael; Stamm, Manfred; Müller, Martin
    The proteasome inhibitor bortezomib (BZM) is one of the most potent anti-cancer drugs in the therapy of multiple myeloma. In this study, an adhesive drug delivery system (DDS) for BZM was developed. Therefore, we extended the present DDS concept of polyelectrolyte complex (PEC) nanoparticle (NP) based on electrostatic interactions between charged drug and polyelectrolyte (PEL) to a DDS concept involving covalent bonding between PEL and uncharged drugs. For this purpose, 3,4-dihydroxyphenyl acetic acid (DOPAC) was polymerized via an oxidatively induced coupling reaction. This novel chemo-reactive polyanion PDOPAC is able to temporarily bind boronic acid groups of BZM via its catechol groups, through esterification. PDOPAC was admixed to poly(l-glutamic acid) (PLG) and poly(l-lysine) (PLL) forming a redispersible PEC NP system after centrifugation, which is advantageous for further colloid and BZM loading processing. It was found that the loading capacity (LC) strongly depends on the PDOPAC and catechol content in the PEC NP. Furthermore, the type of loading and the net charge of the PEC NP affect LC and the residual content (RC) after release. Release experiments of PDOPAC/PEC coatings were performed at medically relevant bone substitute materials (calcium phosphate cement and titanium niobium alloy) whereby the DDS worked independently of the surface properties. Additionally, in contrast to electrostatically based drug loading the release behavior of covalently bound, uncharged BZM is independent of the ionic strength (salt content) in the release medium.
  • Item
    Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin : A Perspective for Glioblastoma Treatment
    (Basel : MDPI, 2019) Makharza, Sami A.; Cirillo, Giuseppe; Vittorio, Orazio; Valli, Emanuele; Voli, Florida; Farfalla, Annafranca; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; El-Gendy, Ahmed A.; Goya, Gerardo F.; Hampel, Silke
    Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2 O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3 O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer’s method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2 O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Release of Bioactive Molecules from Graphene Oxide-Alginate Hybrid Hydrogels: Effect of Crosslinking Method
    (Basel : MDPI, 2023) Madeo, Lorenzo Francesco; Curcio, Manuela; Iemma, Francesca; Nicoletta, Fiore Pasquale; Hampel, Silke; Cirillo, Giuseppe
    To investigate the influence of crosslinking methods on the releasing performance of hybrid hydrogels, we synthesized two systems consisting of Graphene oxide (GO) as a functional element and alginate as polymer counterpart by means of ionic gelation (physical method, 𝐻𝑃𝐴−𝐺𝑂) and radical polymerization (chemical method, 𝐻𝐶𝐴−𝐺𝑂). Formulations were optimized to maximize the GO content (2.0 and 1.15% for 𝐻𝑃𝐴−𝐺𝑂 and 𝐻𝐶𝐴−𝐺𝑂, respectively) and Curcumin (CUR) was loaded as a model drug at 2.5, 5.0, and 7.5% (by weight). The physico-chemical characterization confirmed the homogeneous incorporation of GO within the polymer network and the enhanced thermal stability of hybrid vs. blank hydrogels. The determination of swelling profiles showed a higher swelling degree for 𝐻𝐶𝐴−𝐺𝑂 and a marked pH responsivity due to the COOH functionalities. Moreover, the application of external voltages modified the water affinity of 𝐻𝐶𝐴−𝐺𝑂, while they accelerated the degradation of 𝐻𝑃𝐴−𝐺𝑂 due to the disruption of the crosslinking points and the partial dissolution of alginate. The evaluation of release profiles, extensively analysed by the application of semi-empirical mathematical models, showed a sustained release from hybrid hydrogels, and the possibility to modulate the releasing amount and rate by electro-stimulation of 𝐻𝐶𝐴−𝐺𝑂.
  • Item
    Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy
    (Basel : MDPI, 2021) Curcio, M.; Cirillo, G.; Saletta, F.; Michniewicz, F.; Nicoletta, F.; Vittorio, O.; Hampel, S.; Iemma, F.
    Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices.