Search Results

Now showing 1 - 3 of 3
  • Item
    A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis
    (Melville, NY : American Inst. of Physics, 2019) Wünsche, Martin; Fuchs, Silvio; Weber, Thomas; Nathanael, Jan; Abel, Johann J.; Reinhard, Julius; Wiesner, Felix; Hübner, Uwe; Skruszewicz, Slawomir J.; Paulus, Gerhard G.; Rödel, Christian
    We present a modular extreme ultraviolet (XUV) spectrometer system optimized for a broad spectral range of 12-41 nm (30-99 eV) with a high spectral resolution of λ/Δλ 784 ± 89. The spectrometer system has several operation modes for (1) XUV beam inspection, (2) angular spectral analysis, and (3) imaging spectroscopy. These options allow for a versatile use in high harmonic spectroscopy and XUV beam analysis. The high performance of the spectrometer is demonstrated using a novel cross-sectional imaging method called XUV coherence tomography. © 2019 Author(s).
  • Item
    Laboratory setup for extreme ultraviolet coherence tomography driven by a high-harmonic source
    (Melville, NY : American Inst. of Physics, 2019) Nathanael, Jan; Wünsche, Martin; Fuchs, Silvio; Weber, Thomas; Abel, Johann J.; Reinhard, Julius; Wiesner, Felix; Hübner, Uwe; Skruszewicz, Slawomir J.; Paulus, Gerhard G.; Rödel, Christian
    We present a laboratory beamline dedicated to nanoscale subsurface imaging using extreme ultraviolet coherence tomography (XCT). In this setup, broad-bandwidth extreme ultraviolet (XUV) radiation is generated by a laser-driven high-harmonic source. The beamline is able to handle a spectral range of 30-130 eV and a beam divergence of 10 mrad (full width at half maximum). The XUV radiation is focused on the sample under investigation, and the broadband reflectivity is measured using an XUV spectrometer. For the given spectral window, the XCT beamline is particularly suited to investigate silicon-based nanostructured samples. Cross-sectional imaging of layered nanometer-scale samples can be routinely performed using the laboratory-scale XCT beamline. A depth resolution of 16 nm has been achieved using the spectral range of 36-98 eV which represents a 33% increase in resolution due to the broader spectral range compared to previous work. © 2019 Author(s).
  • Item
    Preparation, analysis, and application of coated glass targets for the Wendelstein 7-X laser blow-off system
    (Melville, NY : American Inst. of Physics, 2020) Wegner, Th.; Geiger, B.; Foest, R.; Jansen van Vuuren, A.; Winters, V. R.; Biedermann, C.; Burhenn, R.; Buttenschön, B.; Cseh, G.; Joda, I.; Kocsis, G.; Kunkel, F.; Quade, A.; Schäfer, J.; Schmitz, O.; Szepesi, T.
    Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with μm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X. © 2020 Author(s).