Search Results

Now showing 1 - 10 of 11
  • Item
    Atomically controlled CVD processing of group IV semiconductors for ultra-large-scale integrations
    (Bristol : IOP Publishing, 2012) Murota, Junichi; Sakuraba, Masao; Tillack, Bernd
    One of the main requirements for ultra-large-scale integrations (ULSIs) is atomic-order control of process technology. Our concept of atomically controlled processing is based on atomic-order surface reaction control by CVD. By ultraclean low-pressure CVD using SiH4 and GeH4 gases, high-quality low-temperature epitaxial growth of Si1−xGex (100) (x=0–1) with atomically flat surfaces and interfaces on Si(100) is achieved. Self-limiting formation of 1–3 atomic layers of group IV or related atoms in the thermal adsorption and reaction of hydride gases on Si1-xGex (100) are generalized based on the Langmuir-type model. By the Si epitaxial growth on top of the material already-formed on Si(100), N, B and C atoms are confined within about a 1 nm thick layer. In Si cap layer growth on the P atomic layer formed on Si1−xGex (100), segregation of P atoms is suppressed by using Si2H6 instead of SiH4 at a low temperature of 450 °C. Heavy C atomic-layer doping suppresses strain relaxation as well as intermixing between Si and Ge at the Si1−xGex/Si heterointerface. It is confirmed that higher carrier concentration and higher carrier mobility are achieved by atomic-layer doping. These results open the way to atomically controlled technology for ULSIs.
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    Phase formation and high-temperature stability of very thin co-sputtered Ti-Al and multilayered Ti/Al films on thermally oxidized si substrates
    (Basel : MDPI AG, 2020) Seifert, M.; Lattner, E.; Menzel, S.B.; Oswald, S.; Gemming, T.
    Ti-Al thin films with a thickness of 200 nm were prepared either by co-sputtering from elemental Ti and Al targets or as Ti/Al multilayers with 10 and 20 nm individual layer thickness on thermally oxidized Si substrates. Some of the films were covered with a 20-nm-thick SiO2 layer, which was used as an oxidation protection against the ambient atmosphere. The films were annealed at up to 800 °C in high vacuum for 10 h, and the phase formation as well as the film architecture was analyzed by X-ray diffraction, cross section, and transmission electron microscopy, as well as Auger electron and X-ray photoelectron spectroscopy. The results reveal that the co-sputtered films remained amorphous after annealing at 600 °C independent on the presence of the SiO2 cover layer. In contrast to this, the γ-TiAl phase was formed in the multilayer films at this temperature. After annealing at 800 °C, all films were degraded completely despite the presence of the cover layer. In addition, a strong chemical reaction between the Ti and SiO2 of the cover layer and the substrate took place, resulting in the formation of Ti silicide. In the multilayer samples, this reaction already started at 600 °C.
  • Item
    Modulation Linearity Characterization of Si Ring Modulators
    (Washington, DC : OSA, 2021) Jo, Youngkwan; Mai, Christian; Lischke, Stefan; Zimmermann, Lars; Choi, Woo-Young
    Modulation linearity of Si ring modulators (RMs) is investigated through the numerical simulation based on the coupled-mode theory and experimental verification. Numerical values of the key parameters needed for the simulation are experimentally extracted. Simulation and measurement results agree well. With these, the influence of input optical wavelength and power on the Si RM linearity are characterized.
  • Item
    Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries
    (Pennington, NJ : ECS, 2016) Jaumann, Tony; Balach, Juan; Klose, Markus; Oswald, Steffen; Eckert, Jürgen; Giebeler, Lars
    In order to utilize silicon as alternative anode for unfavorable lithium metal in lithium – sulfur (Li–S) batteries, a profound understanding of the interfacial characteristics in ether-based electrolytes is required. Herein, the solid electrolyte interface (SEI) of a nanostructured silicon/carbon anode after long-term cycling in an ether-based electrolyte for Li–S batteries is investigated. The role of LiNO3 and 1,3-dioxolane (DOL) in dimethoxy ethane (DME) solutions as typically used electrolyte components on the electrochemical performance and interfacial characteristics on silicon are evaluated. Because of the high surface area of our nanostructured electrode owing to the silicon particle size of around 5 nm and the porous carbon scaffold, the interfacial characteristics dominate the overall electrochemical reversibility opening a detailed analysis. We show that the use of DME/DOL solutions under ambient temperature causes higher degradation of electrolyte components compared to carbonate-based electrolytes used for Li–ion batteries (LIB). This behavior of DME/DOL mixtures is associated with different SEI component formation and it is demonstrated that LiNO3 addition can significantly stabilize the cycle performance of nanostructured silicon/carbon anodes. A careful post-mortem analysis and a discussion in context to carbonate-based electrolyte solutions helps to understand the degradation mechanism of silicon-based anodes in rechargeable lithium-based batteries.
  • Item
    Ripple coarsening on ion beam-eroded surfaces
    (New York, NY [u.a.] : Springer, 2014) Teichmann, M.; Lorbeer, J.; Frost, F.; Rauschenbach, B.
    Abstract: The temporal evolution of ripple pattern on Ge, Si, Al2O3, and SiO2 by low-energy ion beam erosion with Xe + ions is studied. The experiments focus on the ripple dynamics in a fluence range from 1.1 × 1017 cm-2 to 1.3 × 1019 cm-2 at ion incidence angles of 65° and 75° and ion energies of 600 and 1,200 eV. At low fluences a short-wavelength ripple structure emerges on the surface that is superimposed and later on dominated by long wavelength structures for increasing fluences. The coarsening of short wavelength ripples depends on the material system and angle of incidence. These observations are associated with the influence of reflected primary ions and gradient-dependent sputtering. The investigations reveal that coarsening of the pattern is a universal behavior for all investigated materials, just at the earliest accessible stage of surface evolution.
  • Item
    Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: Evidences for light localization effect
    (New York, NY [u.a.] : Springer, 2012) Osminkina, L.A.; Gonchar, K.A.; Marshov, V.S.; Bunkov, K.V.; Petrov, D.V.; Golovan, L.A.; Talkenberg, F.; Sivakov, V.A.; Timoshenko, V.Y.
    We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1-25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 μm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 μm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of 'black silicon', which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.
  • Item
    Thermoelectric properties of silicon and recycled silicon sawing waste
    (Peking : Chinese Ceramic Society, 2019) He, R.; Heyn, W.; Thiel, F.; Pérez, N.; Damm, C.; Pohl, D.; Rellinghaus, B.; Reimann, C.; Beier, M.; Friedrich, J.; Zhu, H.; Ren, Z.; Nielsch, K.; Schierning, G.
    Large-scale-applicable thermoelectric materials should be both self-sustaining, in order to survive long-term duty cycles, and nonpolluting. Among all classes of known thermoelectric materials, these criteria reduce the available candidate pool, leaving silicon as one of the remaining options. Here we first review the thermoelectric properties of various silicon-related materials with respect to their morphologies and microstructures. We then report the thermoelectric properties of silicon sawing wastes recycled from silicon wafer manufacturing. We obtain a high power factor of ∼32 μW cm−1 K−2 at 1273 K with 6% phosphorus substitution in the Si crystal, a value comparable to that of phosphorus-doped silicon-germanium alloys. Our work suggests the large-scale thermoelectric applicability of recycled silicon that would otherwise contribute to the millions of tons of industrial waste produced by the semiconductor industry.
  • Item
    Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis
    (Melville, NY : AIP Publ., 2020) Adkison, Kate M.; Shang, Shun-Li; Bocklund, Brandon J.; Klimm, Detlef; Schlom, Darrell G.; Liu, Zi-Kui
    We have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature. © 2020 Author(s).
  • Item
    Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies
    (New York, NY : IEEE, 2021) Kissinger, Dietmar; Kahmen, Gerhard; Weigel, Robert
    This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance.