Search Results

Now showing 1 - 10 of 18
  • Item
    Enlightening Materials with Photoswitches
    (Weinheim : Wiley-VCH, 2020) Goulet-Hanssens, Alexis; Eisenreich, Fabian; Hecht, Stefan
    Incorporating molecular photoswitches into various materials provides unique opportunities for controlling their properties and functions with high spatiotemporal resolution using remote optical stimuli. The great and largely still untapped potential of these photoresponsive systems has not yet been fully exploited due to the fundamental challenges in harnessing geometrical and electronic changes on the molecular level to modulate macroscopic and bulk material properties. Herein, progress made during the past decade in the field of photoswitchable materials is highlighted. After pointing to some general design principles, materials with an increasing order of the integrated photoswitchable units are discussed, spanning the range from amorphous settings over surfaces/interfaces and supramolecular ensembles, to liquid crystalline and crystalline phases. Finally, some potential future directions are pointed out in the conclusion. In view of the exciting recent achievements in the field, the future emergence and further development of light-driven and optically programmable (inter)active materials and systems are eagerly anticipated. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Supercharged Proteins and Polypeptides
    (Weinheim : Wiley-VCH, 2020) Ma, Chao; Malessa, Anke; Boersma, Arnold J.; Liu, Kai; Herrmann, Andreas
    Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid–fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures
    (London : BioMed Central, 2016) Viell, Jörn; Inouye, Hideyo; Szekely, Noemi K.; Frielinghaus, Henrich; Marks, Caroline; Wang, Yumei; Anders, Nico; Spiess, Antje C.; Makowski, Lee
    Background: The valorization of biomass for chemicals and fuels requires efficient pretreatment. One effective strategy involves the pretreatment with ionic liquids which enables enzymatic saccharification of wood within a few hours under mild conditions. This pretreatment strategy is, however, limited by water and the ionic liquids are rather expensive. The scarce understanding of the involved effects, however, challenges the design of alternative pretreatment concepts. This work investigates the multi length-scale effects of pretreatment of wood in 1-ethyl-3-methylimidazolium acetate (EMIMAc) in mixtures with water using spectroscopy, X-ray and neutron scattering. Results: The structure of beech wood is disintegrated in EMIMAc/water mixtures with a water content up to 8.6 wt%. Above 10.7 wt%, the pretreated wood is not disintegrated, but still much better digested enzymatically compared to native wood. In both regimes, component analysis of the solid after pretreatment shows an extraction of few percent of lignin and hemicellulose. In concentrated EMIMAc, xylan is extracted more efficiently and lignin is defunctionalized. Corresponding to the disintegration at macroscopic scale, SANS and XRD show isotropy and a loss of crystallinity in the pretreated wood, but without distinct reflections of type II cellulose. Hence, the microfibril assembly is decrystallized into rather amorphous cellulose within the cell wall. Conclusions: The molecular and structural changes elucidate the processes of wood pretreatment in EMIMAc/water mixtures. In the aqueous regime with >10.7 wt% water in EMIMAc, xyloglucan and lignin moieties are extracted, which leads to coalescence of fibrillary cellulose structures. Dilute EMIMAc/water mixtures thus resemble established aqueous pretreatment concepts. In concentrated EMIMAc, the swelling due to decrystallinization of cellulose, dissolution of cross-linking xylan, and defunctionalization of lignin releases the mechanical stress to result in macroscopic disintegration of cells. The remaining cell wall constituents of lignin and hemicellulose, however, limit a recrystallization of the solvated cellulose. These pretreatment mechanisms are beyond common pretreatment concepts and pave the way for a formulation of mechanistic requirements of pretreatment with simpler pretreatment liquors. © 2016 Viell et al.
  • Item
    Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns
    (Weinheim : Wiley-VCH, 2020) Cui, Haiyang; Cao, Hao; Cai, Haiying; Jaeger, Karl-Erich; Davari, Mehdi D.; Schwaneberg, Ulrich
    A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach
    (Weinheim : Wiley-VCH, 2019) Michel, Ann-Katrin U.; Heßler, Andreas; Meyer, Sebastian; Pries, Julian; Yu, Yuan; Kalix, Thomas; Lewin, Martin; Hanss, Julian; De Rose, Angela; Maß, Tobias W.W.; Wuttig, Matthias; Chigrin, Dmitry N.; Taubner, Thomas
    Nanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta-atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase-change material (PCM) volume within each meta-atom in a proof-of-principle MS consisting of a PCM-covered Al–nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta-atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Polymeric Membranes With Sufficient Thermo‐Mechanical Stability to Deploy Temperature Enhanced Backwash
    (Weinheim : Wiley-VCH, 2021) Aumeier, Benedikt M.; Vollmer, Fabian; Lenfers, Simon; Yüce, Süleyman; Wessling, Matthias
    The alternative membrane cleaning method Temperature Enhanced Backwash exploits elevated temperatures of typically 125 °C to realize high shear rate. This exceeds usual operating temperatures by far. Therefore, the thermo-mechanical properties of polymeric membranes were investigated. A repeated load cycle testing was suited and sensitive to detect the failure of membrane material and potting. All tested PES membranes showed to be stable during the repeated load cycle testing. The potting adhesive may be decisive, thus, a tensile test at 125 °C is proposed. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH
  • Item
    Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating
    (Weinheim : Wiley-VCH, 2017) Mourran, Ahmed; Zhang, Hang; Vinokur, Rostislav; Möller, Martin
    A soft microrobot composed of a microgel and driven by the light-controlled nonequilibrium dynamics of volume changes is presented. The photothermal response of the microgel, containing plasmonic gold nanorods, enables fast heating/cooling dynamics. Mastering the nonequilibrium response provides control of the complex motion, which goes beyond what has been so far reported for hydrophilic microgels.
  • Item
    Co-generation of Ammonia and H2 from H2O Vapor and N2 Using a Membrane Electrode Assembly
    (Weinheim : Wiley-VCH, 2020) Kugler, Kurt; Kriescher, Stefanie M.A.; Giela, Martin; Hosseiny, Schwan; Thimm, Kristof; Wessling, Matthias
    The direct electrochemical synthesis of NH3 from nitrogen and water vapor without the use of a fossil carbon source is highly desired. This synthesis is a viable option to store energy and produce fertilizer precursors. Here, a new Pt-free membrane electrode assembly is presented. An electrochemical membrane reactor demonstrates the feasibility of co-generating NH3 and H2 directly from nitrogen and water vapor at ambient conditions. An unprecedented high NH3-specific current efficiency of up to 27.5% using Ti as cathodic catalyst is reported. The co-generation can be tuned by the balance of process parameters. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT
    (Weinheim : Wiley-VCH, 2021) Markel, Ulrich; Lanvers, Pia; Sauer, Daniel F.; Wittwer, Malte; Dhoke, Gaurao V.; Davari, Mehdi D.; Schiffels, Johannes; Schwaneberg, Ulrich
    Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Mechanistic Insights into the Triplet Sensitized Photochromism of Diarylethenes
    (Weinheim : Wiley-VCH, 2020) Fredrich, Sebastian; Morack, Tobias; Sliwa, Michel; Hecht, Stefan
    Operating photoswitchable molecules repetitively and reliably is crucial for most of their applications, in particular in (opto)electronic devices, and related to reversibility and fatigue resistance, which both critically depend on the photoisomerization mechanism defined by the substitution pattern. Two diarylethene photoswitches bearing biacetyl triplet sensitizers either at the periphery or at the core were investigated using both stationary as well as transient UV/Vis absorption spectroscopy ranging from the femtosecond to the microsecond time scale. The diarylethene with two biacetyl moieties at the periphery is switching predominantly from the triplet excited state, giving rise to an enhanced fatigue resistance. In contrast, the diarylethene bearing one diketone at the photoreactive inner carbon atom cyclizes from the singlet excited state and shows significantly higher quantum yields for both cyclization and cycloreversion. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.