Search Results

Now showing 1 - 10 of 38
  • Item
    The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications
    (Bristol : IOP Publ., 2018-5-16) Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter
    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.
  • Item
    Foundations of plasmas for medical applications
    (Bristol : IOP Publ., 2022) von Woedtke, T.; Laroussi, M.; Gherardi, M.
    Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids like water or physiological saline by a CAP source is performed in order to study specific biological activities. A basic understanding of the interaction between plasma and liquids and bio-interfaces is essential to follow biological plasma effects. Charged species, metastable species, and other atomic and molecular reactive species first produced in the main plasma ignition are transported to the discharge afterglow to finally be exposed to the biological targets. Contact with these liquid-dominated bio-interfaces generates other secondary reactive oxygen and nitrogen species (ROS, RNS). Both ROS and RNS possess strong oxidative properties and can trigger redox-related signalling pathways in cells and tissue, leading to various impacts of therapeutic relevance. Dependent on the intensity of plasma exposure, redox balance in cells can be influenced in a way that oxidative eustress leads to stimulation of cellular processes or oxidative distress leads to cell death. Currently, clinical CAP application is realized mainly in wound healing. The use of plasma in cancer treatment (i.e. plasma oncology) is a currently emerging field of research. Future perspectives and challenges in plasma medicine are mainly directed towards the control and optimization of CAP devices, to broaden and establish its medical applications, and to open up new plasma-based therapies in medicine.
  • Item
    Spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges in helium with nitrogen admixtures
    (Bristol : IOP Publ., 2017-09-20) Bogaczyk, Marc; Tschiersch, Robert; Nemschokmichal, Sebastian; Meichsner, Jürgen
    This work reports on the spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges driven by sine-wave feeding voltage at a frequency of 2 kHz in helium with small nitrogen admixtures. The discharge gap of 3 mm is bounded by glass plates on both plane electrodes. Priority is given to the lateral discharge inhomogeneities, underlying volume- and surface-memory effects, and the breakdown mechanism. Therefore, relevant processes in the discharge volume and on the dielectric surfaces were investigated by ICCD camera imaging and optical emission spectroscopy in combination with electrical measurements and surface charge diagnostics using the electro-optic Pockels effect of a bismuth silicon oxide crystal. The number of current pulses per half-cycle of the sine-wave voltage rises with increasing nitrogen admixture to helium due to the predominant role of the Penning ionization. Here, the transition from the first glow-like breakdown to the last Townsend-like breakdown is favored by residual species from the former breakdowns which enhance the secondary electron emission during the pre-phase of the later breakdowns. Moreover, the surface charge measurements reveal that the consecutive breakdowns occur alternately at central and peripheral regions on the electrode surface. These spatial inhomogeneities are conserved by the surface charge memory effect as pointed out by the recalculated spatio-temporal development of the gap voltage.
  • Item
    Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
    (Bristol : IOP Publ., 2023) Lü, X.; Röben, B.; Biermann, K.; Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; van Helden, J.H.; Schrottke, L.; Grahn, H.T.
    We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.
  • Item
    Upscaling from single- to multi-filament dielectric barrier discharges in pulsed operation
    (Bristol : IOP Publ., 2022) Höft, H.; Becker, M.M.; Kettlitz, M.; Brandenburg, R.
    A study on the scalability of discharge characteristics of a single-filament dielectric barrier discharge (DBD) to a spatially one-dimensional multi-filament arrangement driven by the same high-voltage (HV) pulses was performed for a gas mixture of 0.1 vol% O2 in N2 at 1 bar. Both arrangements feature a 1 mm gap with dielectric-covered electrodes featuring two hemispherical alumina caps for the single-filament and two parallel alumina-tubes for the multi-filament arrangement. The DBDs were characterised by electrical measurements (for peak current, energy, and power) accompanied by iCCD and streak imaging to determine the filament number and the discharge development in the gas gap and on the surfaces. It was found that the electrical quantities scale with a constant factor between the single- and multi-filament arrangement, which is expected to be related to the filament number. In the multi-filament arrangement, the pulsed operation leads to filament formation in the entire gap in lateral direction within less than 2 ns. Furthermore, particular breakdown or discharge inception regimes were identified for the multi-filament DBDs. These regimes could be generated at the falling slope of asymmetrical HV pulses featuring e.g. a double-streamer propagation, which was previously reported for single-filament DBDs. Consequently, it was proven that the discharge manipulation by varying the HV pulse widths obtained for single-filament DBDs can also be applied in a one-dimensional multi-filament arrangement, i.e. an upscaling based on the knowledge for single-filament DBDs seems to be generally possible.
  • Item
    Temperature and pressure profiles of an ablation-controlled arc plasma in air
    (Bristol : IOP Publ., 2019) Becerra, Marley; Pettersson, Jonas; Franke, Steffen; Gortschakow, Sergey
    Experimental measurements of the spatial distribution of temperature and composition of ablation-controlled arc plasmas are a key to validate the predictions of metal evaporation and polymer ablation models. Thus, high-speed photography and space-resolved spectroscopic measurements have been performed to characterize a stable air arc plasma jet controlled by ablation of a polymer nozzle made of Polyoxymethylene copolymer (POM-C) or polyamide (PA6). The spectroscopic analysis is performed along a plane perpendicular to the arc jet axis for a current of 1.8 kA, corresponding to an estimated current density of ~65 A mm-2. Temperature and partial pressure profiles of the plasma for copper, hydrogen and carbon in the gas mixture are estimated as an inverse optimization problem by using measured side-on radiance spectra and radiative transfer spectral simulations. It is shown that the generated ablation-controlled arc has a complicated, non-uniform gas composition. Thus, the generated arc jet has a thin metallic core with a lower almost constant hydrogen pressure, surrounded by a thicker hydrogen and carbon mantle at partial pressures slightly lower than atmospheric pressure. The separation of hydrogen and carbon in the core is a consequence of demixing of the polymer vapour in the plasma. It is found that the overall shape of the temperature and pressure profiles obtained for the arc plasmas with the POM-C and PA6 nozzles are similar although differ in peak values and width. © 2019 IOP Publishing Ltd.
  • Item
    Double-propagation mode in short-gap spark discharges driven by HV pulses with sub-ns rise time
    (Bristol : IOP Publ., 2020) Höft, H.; Becker, M.M.; Kolb, J.F.; Huiskamp, T.
    The object of this study is the investigation of spark discharges ignited by unipolar positive rectangular high voltage (HV) pulses with 200 ps rise time and (15 ± 2) kV amplitude with 3 ns duration full width at half maximum in synthetic air in a 1.2 mm pin-to-pin gap (tungsten electrodes) at atmospheric pressure. The discharge development was recorded by synchronised iCCD and streak camera measurements in single-shot operation, revealing a two-stage propagation mode. The discharge started with a fast initial breakdown across the entire gap (∼10 mm ns−1) during the HV slope, followed by a much slower (∼0.1 mm ns−1) propagation originating from both electrodes towards the gap centre. The combination of high-resolution diagnostics with numerical modelling indicated that the initial breakdown phase is caused by the rapid increase of electric field strength during the steep HV slope, which leads to the simultaneous fast propagation of a positive and a negative streamer.
  • Item
    Electric field determination in transient plasmas: in situ & non-invasive methods
    (Bristol : IOP Publ., 2022) Goldberg, Benjamin M.; Hoder, Tomáš; Brandenburg, Ronny
    One of the primary basic plasma parameters within transient nonequilibrium plasmas is the reduced electric field strength, roughly understood as the ratio of the electrical energy given to the charged species between two collisions. While physical probes have historically been used for electric field measurements, recent advances in high intensity lasers and sensitive detection methods have allowed for non-invasive optical electric field determination in nearly any discharge configuration with time-resolution up to the sub-nanosecond range and sub-millimeter spatial resolution. This topical review serves to highlight several non-invasive methods for in situ electric field strength determination in transient plasmas ranging from high vacuum environments to atmospheric pressure and above. We will discuss the advantages and proper implementation of (i) laser induced fluorescence dip spectroscopy for measurements in low pressure RF discharges, (ii) optical emission spectroscopy based methods for nitrogen, helium or hydrogen containing discharges, (iii) electric field induced coherent Raman scattering, and (iv) electric field induced second harmonic generation. The physical mechanism for each method will be described as well as basic implementation and highlighting recent results.
  • Item
    Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas
    (Bristol : IOP Publ., 2023) Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; Lü, X.; Röben, B.; Biermann, K.; Schrottke, L.; Grahn, H.T.; van Helden, J.H.
    This paper describes the first implementation of terahertz (THz) quantum cascade lasers for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz. Measurements were performed on a low-pressure capacitively coupled radio frequency oxygen discharge. The detection limit in this arrangement was found to be 2 × 10 13 cm−3, while the measurement accuracy was within 5%, as demonstrated by reference measurements of a well-defined ammonia transition. The results show that the presented method is well suited to measure atomic oxygen densities, and it closes the THz gap for quantitative atomic density measurements in harsh environments such as plasmas.
  • Item
    The 2022 Plasma Roadmap: low temperature plasma science and technology
    (Bristol : IOP Publ., 2022) Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-H.; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; Van Der Walt, I.J.; Van De Sanden, M.C.M.; Von Woedtke, T.
    The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5-10 years.