Search Results

Now showing 1 - 4 of 4
  • Item
    Metal–ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand
    (London : Soc., 2016) Eijsink, Linda E.; Perdriau, Sébastien C. P.; de Vries, Johannes G.; Otten, Edwin
    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal–ligand cooperative manner. This leads to the formation of a series of complexes with new Ru–N(nitrile) and C(ligand)–C(nitrile) bonds. The initial nitrile cycloaddition products, the ketimido complexes 3, have a Brønsted basic (nitrile-derived) Ru–N fragment. This is able to deprotonate a CH2 side-arm of the pincer ligand to give ketimine complexes (4) with a de-aromatized pyridine backbone. Alternatively, the presence of a CH2 group adjacent to the nitrile functionality can lead to tautomerization to an enamido complex (5). Variable-temperature NMR studies and DFT calculations provide insight in the relative stability of these compounds and highlight the importance of their facile interconversion in the context of subsequent nitrile transformations.
  • Item
    Efficient methylation of anilines with methanol catalysed by cyclometalated ruthenium complexes
    (London : RSC Publ., 2021) Piehl, Patrick; Amuso, Roberta; Spannenberg, Anke; Gabriele, Bartolo; Neumann, Helfried; Beller, Matthias
    Cyclometalated ruthenium complexes4-10allow the effective methylation of anilines with methanol to selectively giveN-methylanilines. This hydrogen autotransfer procedure proceeds under mild conditions (60 °C) in a practical manner (NaOH as base). Mechanistic investigations suggest an active homogenous ruthenium complex and β-hydride elimination of methanol as the rate determining step. © The Royal Society of Chemistry 2021.
  • Item
    Two-photon, visible light water splitting at a molecular ruthenium complex
    (Cambridge : RSC Publ., 2021) Schneidewind, Jacob; Argüello Cordero, Miguel A.; Junge, Henrik; Lochbrunner, Stefan; Beller, Matthias
    Water splitting to give molecular oxygen and hydrogen or the corresponding protons and electrons is a fundamental four-electron redox process, which forms the basis of photosynthesis and is a promising approach to convert solar into chemical energy. Artificial water splitting systems have struggled with orchestrating the kinetically complex absorption of four photons as well as the difficult utilization of visible light. Based on a detailed kinetic, spectroscopic and computational study of Milstein's ruthenium complex, we report a new mechanistic paradigm for water splitting, which requires only two photons and offers a new method to extend the range of usable wavelengths far into the visible region. We show that two-photon water splitting is enabled by absorption of the first, shorter wavelength photon, which produces an intermediate capable of absorbing the second, longer wavelength photon (up to 630 nm). The second absorption then causes O–O bond formation and liberation of O2. Theoretical modelling shows that two-photon water splitting can be used to achieve a maximum solar-to-hydrogen efficiency of 18.8%, which could be increased further to 28.6% through photochemical instead of thermal H2 release. It is therefore possible to exceed the maximum efficiency of dual absorber systems while only requiring a single catalyst. Due to the lower kinetic complexity, intrinsic utilization of a wide wavelength range and high-performance potential, we believe that this mechanism will inspire the development of a new class of water splitting systems that go beyond the reaction blueprint of photosynthesis.
  • Item
    Novel ruthenium-catalyst for hydroesterification of olefins with formates
    (London [u.a.] : Royal Society of Chemistry, 2014) Profir, I.; Beller, M.; Fleischer, I.
    An alternative ruthenium-based catalyst for the hydroesterification of olefins with formates is reported. The good activity of our system is ensured by the use of a bidentate P,N-ligand and ruthenium dodecacarbonyl. A range of formates can be used for selective alkoxycarbonylation of aromatic olefins. In addition, the synthesis of selected aliphatic esters is realized. The proposed active ruthenium complex has been isolated and characterized.