Search Results

Now showing 1 - 10 of 13
  • Item
    X-ray emission from stainless steel foils irradiated by femtosecond petawatt laser pulses
    (Bristol : IOP Publ., 2018) Alkhimova, M.A.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Pikuz, S.A.; Nishiuchi, M.; Sakaki, H.; Pirozhkov, A.S.; Sagisaka, S.; Dover, N.P.; Kondo, Ko.; Ogura, K.; Fukuda, Y.; Kiriyama, H.; Esirkepov, T.; Bulanov, S V.; Andreev, A.; Kando, M.; Zhidkov, A.; Nishitani, K.; Miyahara, T.; Watanabe, Y.; Kodama, R.; Kondo, K.
    We report about nonlinear growth of x-ray emission intensity emitted from plasma generated by femtosecond petawatt laser pulses irradiating stainless steel foils. X-ray emission intensity increases as ∼ I 4.5 with laser intensity I on a target. High spectrally resolved x-ray emission from front and rear surfaces of 5 μm thickness stainless steel targets were obtained at the wavelength range 1.7-2.1 Å, for the first time in experiments at femtosecond petawatt laser facility J-KAREN-P. Total intensity of front x-ray spectra three times dominates to rear side spectra for maximum laser intensity I ≈ 3.21021 W/cm2. Growth of x-ray emission is mostly determined by contribution of bremsstrahlung radiation that allowed estimating bulk electron plasma temperature for various magnitude of laser intensity on target.
  • Item
    43 W, 1.55 μm and 12.5 W, 3.1 μm dual-beam, sub-10 cycle, 100 kHz optical parametric chirped pulse amplifier
    (Washington, DC : Soc., 2018) Mero, Mark; Heiner, Zsuzsanna; Petrov, Valentin; Rottke, Horst; Branchi, Federico; Thomas, Gabrielle M.; Vrakking, Marc J. J.
    We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier. Two optically synchronized infrared output beams are simultaneously available: a 430 μJ, 51 fs, carrier-envelope phase stable beam at 1.55 μm and an angular-dispersion-compensated, 125 μJ, 73 fs beam at 3.1 μm.
  • Item
    The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project*
    (Bristol : IOP, 2011) Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; De Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J.J.; Pierini, D.; Pratt, G.W.; Quintana, H.; Rosati, P.; Santos, J.S.; Schwope, A.D.
    We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 < z ≲ 1.6 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg 2 of noncontiguous deep archival XMM-Newton coverage, of which 49.4 deg 2 are part of the core survey with a quantifiable selection function and 17.7 deg 2 are classified as 'gold' coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ̃ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCPJ0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ≥ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M 200 ≃ 2×10 14 M ⊙, while the probed mass range for the distant clusters spans approximately (0.7-7)×10 14 M ⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm 12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1' from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to lowz systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass.
  • Item
    Measuring conditions for second order X-ray Bragg-spectrometry
    (Bristol : Institute of Physics Publishing, 2014) Dellith, J.; Scheffel, A.; Wendt, M.
    The KL2,3 (α)1,2-lines of 19K, the L3M4,5 (α)1,2-lines of 48Cd, and the M5N6,7 (α)1,2-lines of 92U are lines of comparable energy in the region of approximately 3 keV. In none of these cases were we able to resolve the three doublets when recording the spectra in first order Bragg spectrometry using a PET crystal as the dispersing element. For the purpose of enhancing the resolving power of the spectrometer, the three α spectra were recorded in second order reflection, thereby transferring the lines into another spectral region dominated by X-ray quanta of half the energy. In order to achieve high net peak intensities as well as a high peak-to-background ratio and, consequently, a high level of detection capability, the discriminator settings should be optimized quite carefully. In this manner, we were able to resolve the three α doublets and estimate α2/α1 intensity ratios. Inexplicably, current monographs, e.g., by Goldstein et al, do not contain any indications about the rational use of high order spectrometry. Only a few rather old monographs contain some hints in this regard.
  • Item
    The electronic structure of ϵ-Ga2O3
    (Melville, NY : AIP Publ., 2019) Mulazzi, M.; Reichmann, F.; Becker, A.; Klesse, W.M.; Alippi, P.; Fiorentini, V.; Parisini, A.; Bosi, M.; Fornari, R.
    The electronic structure of ε-Ga2O3 thin films has been investigated by ab initio calculations and photoemission spectroscopy with UV, soft, and hard X-rays to probe the surface and bulk properties. The latter measurements reveal a peculiar satellite structure in the Ga 2p core level spectrum, absent at the surface, and a core-level broadening that can be attributed to photoelectron recoil. The photoemission experiments indicate that the energy separation between the valence band and the Fermi level is about 4.4 eV, a valence band maximum at the Γ point and an effective mass of the highest lying bands of – 4.2 free electron masses. The value of the bandgap compares well with that obtained by optical experiments and with that obtained by calculations performed using a hybrid density-functional, which also reproduce well the dispersion and density of states.
  • Item
    X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor
    (Washington, DC : American Chemical Society, 2011) Hrauda, N.; Zhang, J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C.; Nanver, L.K.; Moers, J.; Grützmacher, D.; Bauer, G.
    For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.
  • Item
    Studying nanostructure gradients in injection-molded polypropylene/ montmorillonite composites by microbeam small-angle x-ray scattering
    (Abingdon : Taylor & Francis, 2014) Stribeck, N.; Schneider, K.; Zeinolebadi, A.; Li, X.; Sanporean, C.-G.; Vuluga, Z.; Iancu, S.; Duldner, M.; Santoro, G.; Roth, S.V.
    The core-shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 μm thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin-core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles.
  • Item
    Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal
    (Melville, NY : AIP Publishing LLC, 2015) Weisshaupt, Jannick; Juvé, Vincent; Holtz, Marcel; Woerner, Michael; Elsaesser, Thomas
    The interaction of intense femtosecond pulses with metals allows for generating ultrashort hard x-rays. In contrast to plasma theories, tunneling from the target into vacuum is introduced as electron generation step, followed by vacuum acceleration in the laser field and re-entrance into the target to generate characteristic x-rays and Bremsstrahlung. For negligible space charge in vacuum, the Kα flux is proportional to the incident intensity and the wavelength squared, suggesting a strong enhancement of the x-ray flux by mid-infrared driving pulses. This prediction is in quantitative agreement with experiments on femtosecond Cu Kα generation.
  • Item
    Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity
    (Melville, NY : AIP Publishing LLC, 2021) Chardonnet, Valentin; Hennes, Marcel; Jarrier, Romain; Delaunay, Renaud; Jaouen, Nicolas; Kuhlmann, Marion; Ekanayake, Nagitha; Léveillé, Cyril; von Korff Schmising, Clemens; Schick, Daniel; Yao, Kelvin; Liu, Xuan; Chiuzbăian, Gheorghe S.; Lüning, Jan; Vodungbo, Boris; Jal, Emmanuelle
    During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.
  • Item
    A liquid flatjet system for solution phase soft-x-ray spectroscopy
    (Melville, NY : AIP Publishing LLC, 2015) Ekimova, Maria; Quevedo, Wilson; Faubel, Manfred; Wernet, Philippe; Nibbering, Erik T. J.
    We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 μm orifices, under an impact angle of 48° leads to double sheet formation, of which the first sheet is 4.6 mm long and 1.0 mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10(-3) mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.4-3 μm, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (∼10 ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4 (+). Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime.