Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Charlemagne's summit canal: An early medieval hydro-engineering project for passing the Central European Watershed

2014, Zielhofer, C., Leitholdt, E., Werther, L., Stele, A., Bussmann, J., Linzen, S., Schneider, M., Meyer, C., Berg-Hobohm, S., Ettel, P.

The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmü hl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.

Loading...
Thumbnail Image
Item

simpleISM—A straight forward guide to upgrade from confocal to ISM

2022, Goswami, Monalisa, Lachmann, René, Kretschmer, Robert, Heintzmann, Rainer

Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope. In this paper, we explain in detail, based on an Olympus Fluoview 300 system, how a scanning microscope can be upgraded into an image scanning microscope (ISM) using a simple camera-based detector and an Arduino Due providing a galvo driving and camera synchronization signals. We could confirm a resolution improvement as well as superconcentration and made the interesting observation of a reduced influence of laser fluctuations.

Loading...
Thumbnail Image
Item

Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength

2016, Lu-Walther, Hui-Wen, Hou, Wenya, Kielhorn, Martin, Arai, Yoshiyuki, Nagai, Takeharu, Kessels, Michael M., Qualmann, Britta, Heintzmann, Rainer

Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles.