Search Results

Now showing 1 - 4 of 4
  • Item
    Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings
    (Columbus, Ohio : American Chemical Society, 2017) Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J.; Rodriguez-Emmenegger, Cesar
    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
  • Item
    Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Robaschik, Peter; Siles, Pablo F.; Bülz, Daniel; Richter, Peter; Monecke, Manuel; Fronk, Michael; Klyatskaya, Svetlana; Grimm, Daniel; Schmidt, Oliver G.; Ruben, Mario; Zahn, Dietrich R.T.; Salvan, Georgeta
    The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFMbased electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.
  • Item
    Dielectric function decomposition by dipole interaction distribution: Application to triclinic K2Cr2O7
    ([London] : IOP, 2020) Sturm, C.; Höfer, S.; Hingerl, K.; Mayerhöfe, T.G.; Grundmann, M.
    Here we present a general approach for the description for the frequency dependent dielectric tensor coefficients for optically anisotropic materials. Based on symmetry arguments we show that the components of the dielectric tensor are in general not independent of each other. For each excitation there exists an eigensystem, where its contribution to the dielectric tensor can be described by a diagonal susceptibility tensor. From the orientation of the eigensystem and the relative magnitude of the tensor elements, the dipole interaction distribution in real space can be deduced. In the limiting cases, the oriented dipole approach as well as the tensor of isotropic and uniaxial materials are obtained. The application of this model is demonstrated exemplarily on triclinic K2Cr2O7 and the orientation and directional distribution of the corresponding dipole moments in real space are determined. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening
    ([Bad Honnef] : Dt. Physikalische Ges., 2018) Schleife, André; Neumann, Maciej D.; Esser, Norbert; Galazka, Zbigniew; Gottwald, Alexander; Nixdorf, Jakob; Goldhahn, Rüdiger; Feneberg, Martin
    The framework of many-body perturbation theory led to deep insight into electronic structure and optical properties of diverse systems and, in particular, many semiconductors. It relies on an accurate approximation of the screened Coulomb electron–electron interaction W, that in current implementations is usually achieved by describing electronic interband transitions. However, our results for several oxide semiconductors indicate that for polar materials it is necessary to also account for lattice contributions to dielectric screening. To clarify this question in this work, we combine highly accurate experimentation and cutting-edge theoretical spectroscopy to elucidate the interplay of quasiparticle and excitonic effects for cubic bixbyite In2O3 across an unprecedentedly large photon energy range. We then show that the agreement between experiment and theory is excellent and, thus, validate that the physics of quasiparticle and excitonic effects is described accurately by these first-principles techniques, except for the immediate vicinity of the absorption onset. Finally, our combination of experimental and computational data clearly establishes the need for including a lattice contribution to dielectric screening in the screened electron–electron interaction, in order to improve the description of excitonic effects near the absorption edge.