Search Results

Now showing 1 - 4 of 4
  • Item
    The innate immune response of self-assembling silk fibroin hydrogels
    (Cambridge : Royal Soc. of Chemistry, 2021) Gorenkova, Natalia; Maitz, Manfred F.; Böhme, Georg; Alhadrami, Hani A.; Jiffri, Essam H.; Totten, John D.; Werner, Carsten; Carswell, Hilary V. O.; Seib, F. Philipp
    Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses. This journal is
  • Item
    Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts
    (Cambridge : Royal Soc. of Chemistry, 2020) Clauder, Franziska; Zitzmann, Franziska D.; Friebe, Sabrina; Mayr, Stefan G.; Robitzki, Andrea A.; Beck-Sickinger, Annette G.
    Insufficient endothelialization of cardiovascular devices is a high-risk factor for implant failure. Presentation of extracellular matrix (ECM)-derived coatings is a well-known strategy to improve implant integration. However, the complexity of the system is challenging and strategies for applying multifunctionality are required. Here, we engineered mussel-derived surface-binding peptides equipped with integrin (c[RGDfK]) and proteoglycan binding sites (FHRRIKA) for enhanced endothelialization. Surface-binding properties of the platform containing l-3,4-dihydroxyphenylalanine (DOPA) residues were confirmed for hydrophilized polycaprolactone-co-lactide scaffolds as well as for glass and polystyrene. Further, heparin and the heparin-binding angiogenic factors VEGF, FGF-2 and CXCL12 were immobilized onto the peptide in a modular assembly. Presentation of bioactive peptides greatly enhanced human umbilical vein endothelial cell (HUVEC) adhesion and survival under static and fluidic conditions. In subsequent investigations, peptide-heparin-complexes loaded with CXCL12 or VEGF had an additional increasing effect on cell viability, differentiation and migration. Finally, hemocompatibility of the coatings was ensured. This study demonstrates that coatings combining adhesion peptides, glycosaminoglycans and modulators are a versatile tool to convey ECM-inspired multifunctionality to biomaterials and efficiently promote their integration. © 2020 The Royal Society of Chemistry.
  • Item
    Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain
    (Cambridge : Royal Soc. of Chemistry, 2020) Schirmer, Lucas; Hoornaert, Chloé; Le Blon, Debbie; Eigel, Dimitri; Neto, Catia; Gumbleton, Mark; Welzel, Petra B.; Rosser, Anne E.; Werner, Carsten; Ponsaerts, Peter; Newland, Ben
    Interleukin-13 (IL-13) drives cells of myeloid origin towards a more anti-inflammatory phenotype, but delivery to the brain remains problematic. Herein, we show that heparin-based cryogel microcarriers load high amounts of IL-13, releasing it slowly. Intra-striatal injection of loaded microcarriers caused local up-regulation of ARG1 in myeloid cells for pro-regenerative immunomodulation in the brain. © 2020 The Royal Society of Chemistry.
  • Item
    Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: Implications for cell transplantation
    (Cambridge : Royal Soc. of Chemistry, 2018) Newland, Heike; Eigel, Dimitri; Rosser, Anne E.; Werner, Carsten; Newland, Ben
    This study outlines the synthesis of microscale oxygen producing spheres, which, when used in conjunction with catalase, can raise the dissolved oxygen content of cell culture media for 16-20 hours. In conditions of oxygen and glucose deprivation, designed to mimic the graft environment in vivo, the spheres rescue SH-SY5Y cells and meschymal stem cells, showing that oxygen producing biomaterials may hold potential to improve the survival of cells post-transplantation.