Search Results

Now showing 1 - 2 of 2
  • Item
    Charge inversion effects in electrophoresis of polyelectrolytes in the presence of multivalent counterions and transversal electric fields
    (Basel : MDPI AG, 2014) Nedelcu, S.; Sommer, J.-U.
    By molecular dynamics simulations we investigate the transport of charged polymers in confinement, under externally applied electric fields, in straight cylinders of uniform diameter and in the presence of monovalent or multivalent counterions. The applied electric field has two components; a longitudinal component along the axis of the cylinder and a transversal component perpendicular to the cylinder axis. The direction of electrophoretic velocity depends on the polyelectrolyte length, valency of the counterions present in solution and transversal electric field value. A statistical model is put forward in order to explain these observations.
  • Item
    Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes
    (Cambridge : Royal Society of Chemistry, 2016) Müller, C.; Neckel, I.; Monecke, M.; Dzhagan, V.; Salvan, G.; Schulze, S.; Baunack, S.; Gemming, T.; Oswald, S.; Engemaiere, V.; Mosca, D.H.
    We report the fabrication of Ni2.7Mn0.9Ga0.4/InGaAs bilayers on GaAs (001)/InGaAs substrates by molecular beam epitaxy. To form freestanding microtubes the bilayers have been released from the substrate by strain engineering. Microtubes with up to three windings have been successfully realized by tailoring the size and strain of the bilayer. The structure and magnetic properties of both, the initial films and the rolled-up microtubes, are investigated by electron microscopy, X-ray techniques and magnetization measurements. A tetragonal lattice with c/a = 2.03 (film) and c/a = 2.01 (tube) is identified for the Ni2.7Mn0.9Ga0.4 alloy. Furthermore, a significant influence of the cylindrical geometry and strain relaxation induced by roll-up on the magnetic properties of the tube is found.