Search Results

Now showing 1 - 4 of 4
  • Item
    Delaying future sea-level rise by storing water in Antarctica
    (München : European Geopyhsical Union, 2016) Frieler, K.; Mengel, M.; Levermann, A.
    Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 °C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80 % of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mm yr−1 will exceed 7 % of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes.
  • Item
    Valley control by linearly polarized laser pulses: example of WSe2
    (Washington, DC : OSA, 2022) Sharma, S.; Elliott, P.; Shallcross, S.
    Electrons at the band edges of materials are endowed with a valley index, a quantum number locating the band edge within the Brillouin zone. An important question is then how this index may be controlled by laser pulses, with current understanding that it couples exclusively via circularly polarized light. Employing both tight-binding and state-of-the-art time dependent density function theory, we show that on femtosecond time scales valley coupling is a much more general effect. We find that two time separated linearly polarized pulses allow almost complete control over valley excitation, with the pulse time difference and polarization vectors emerging as key parameters for valley control. Our findings highlight the possibility of controlling coherent electronic excitation by successive femtosecond laser pulses, and offer a route towards valleytronics in two-dimensional materials.
  • Item
    Sub-cycle valleytronics: control of valley polarization using few-cycle linearly polarized pulses
    (Washington, DC : OSA, 2021) Jiménez-Galán, Álvaro; Silva, Rui E. F.; Smirnova, Olga; Ivanov, Misha
    So far, it has been assumed that selective excitation of a desired valley in the Brillouin zone of a hexagonal two-dimensional material has to rely on using circularly polarized fields. We theoretically demonstrate a way to control the valley excitation in hexagonal 2D materials on a few-femtosecond timescale using a few-cycle, linearly polarized pulse with controlled carrier–envelope phase. The valley polarization is mapped onto the strength of the perpendicular harmonic signal of a weak, linearly polarized pulse, which allows to read this information all-optically without destroying the valley state and without relying on the Berry curvature, making our approach potentially applicable to inversion-symmetric materials. We show applicability of this method to hexagonal boron nitride and MoS2.
  • Item
    Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan
    (Göttingen : Copernicus Publ., 2018) Polom, Ulrich; Alrshdan, Hussam; Al-Halbouni, Djamil; Holohan, Eoghan P.; Dahm, Torsten; Sawarieh, Ali; Atallah, Mohamad Y.; Krawczyk, Charlotte M.
    Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2–10 m) compacted salt layer formerly suggested to lie at ca. 35–40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings.