Search Results

Now showing 1 - 10 of 20
  • Item
    Structure-property relationships in nanoporous metallic glasses
    (Amsterdam [u.a.] : Elsevier Science, 2016) Åžopu, D.; Soyarslan, C.; Sarac, B.; Bargmann, S.; Stoica, M.; Eckert, J.
    We investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64 Zr36 glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.
  • Item
    Nanometer-resolved mechanical properties around GaN crystal surface steps
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Buchwald, J.; Sarmanova, M.; Rauschenbach, B.; Mayr, S.G.
    The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.
  • Item
    Room temperature ionic liquids with two symmetric ions
    (Cambridge : RSC, 2023) Rauber, Daniel; Philippi, Frederik; Schroeder, Daniel; Morgenstern, Bernd; White, Andrew J. P.; Jochum, Marlon; Welton, Tom; Kay, Christopher W. M.
    Room temperature ionic liquids typically contain asymmetric organic cations. The asymmetry is thought to enhance disorder, thereby providing an entropic counter-balance to the strong, enthalpic, ionic interactions, and leading, therefore, to lower melting points. Unfortunately, the synthesis and purification of such asymmetric cations is typically more demanding. Here we introduce novel room temperature ionic liquids in which both cation and anion are formally symmetric. The chemical basis for this unprecedented behaviour is the incorporation of ether-containing side chains - which increase the configurational entropy - in the cation. Molecular dynamics simulations indicate that the ether-containing side chains transiently sample curled configurations. Our results contradict the long-standing paradigm that at least one asymmetric ion is required for ionic liquids to be molten at room temperature, and hence open up new and simpler design pathways for these remarkable materials.
  • Item
    Laser powder bed fusion of Fe60(CoCrNiMn)40 medium-entropy alloy with excellent strength-ductility balance
    (Amsterdam [u.a.] : Elsevier Science, 2024) Yang, Shengze; Liu, Yang; Chen, Hongyu; Wang, Yonggang; Kosiba, Konrad
    In this study, Fe60(CoCrNiMn)40 medium-entropy alloy (MEA) was fabricated by laser powder bed fusion (LPBF) via mixing of pure Fe and FeCoCrNiMn powders, the processability, microstructure and mechanical properties were systematically investigated, and the mechanism of strengthening and toughening were revealed through combination of experiments and molecular dynamics (MD) simulations. Results show that fraction of BCC phase decreased gradually with increasing volume energy density (VED), and thus heterostructue with varying FCC and BCC phases were produced through regulating the VED. The Fe60(CoCrNiMn)40 MEA (with scanning speeds of 700 and 800 mm/s) showed excellent strength-plasticity balance (e.g. 476 MPa, 612 MPa and 63 %) compared to the equiatomic FeCoCrNiMn HEA, which is ascribed to the synergistic strengthening and toughening effects involving the twinning induced plasticity (TWIP) and the reinforcement caused by the BCC phase (act as reinforced particle) embedded in the FCC matrix.
  • Item
    Charged polymers transport under applied electric fields in periodic channels
    (Basel : MDPI AG, 2013) Nedelcu, S.; Sommer, J.-U.
    By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.
  • Item
    Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation
    (Washington, DC : ACS Publications, 2015) Buchner, Franziska; Nakayama, Akira; Yamazaki, Shohei; Ritze, Hans-Hermann; Lübcke, Andrea
    Time-resolved photoelectron spectroscopy is performed on thymine and thymidine in aqueous solution to study the excited-state relaxation dynamics of these molecules. We find two contributions with sub-ps lifetimes in line with recent excited-state QM/MM molecular dynamics simulations (J. Chem. Phys.2013, 139, 214304). The temporal evolution of ionization energies for the excited ππ* state along the QM/MM molecular dynamics trajectories were calculated and are compatible with experimental results, where the two contributions correspond to the relaxation paths in the ππ* state involving different conical intersections with the ground state. Theoretical calculations also show that ionization from the nπ* state is possible at the given photon energies, but we have not found any experimental indication for signal from the nπ* state. In contrast to currently accepted relaxation mechanisms, we suggest that the nπ* state is not involved in the relaxation process of thymine in aqueous solution.
  • Item
    Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers
    (Washington, DC : Soc., 2019) Mordvinkin, Anton; Suckow, Marcus; Böhme, Frank; Colby, Ralph H.; Creton, Costantino; Saalwächter, Kay
    We present a detailed comparison of the microscopic dynamics and the macroscopic mechanical behavior of novel butyl rubber ionomers with tunable dynamics of sparse sticky imidazole-based sidegroups that form clusters of about 20 units separated by essentially unperturbed chains. This material platform shows promise for application as self-healing elastomers. Size and thermal stability of the ionic clusters were probed by small-angle X-ray scattering, and the chain and sticker dynamics were studied by a combination of broadband dielectric spectroscopy (BDS) and advanced NMR methods. The results are correlated with the rheological behavior characterized by dynamic-mechanical analysis (DMA). While the NMR-detected chain relaxation and DMA results agree quantitatively and confirm relevant aspects of the sticky-reptation picture on a microscopic level, we stress and explain that apparent master curves are of limited use for such a comparison. The cluster-related relaxation time detected by BDS is much shorter than the elastic chain relaxation time, although the weak conductivity does follow the latter. The systematic trends across the sample series suggest that all relaxations are dominated by a cluster-related activation barrier, but also that the BDS-based cluster relaxation does not seem to be directly associated with the effective sticker lifetime. Nonlinear stress-strain experiments demonstrate a reduction of sticker lifetime on stretching and that the stored stress and the elastic recovery depend on the deformation rate. © 2019 American Chemical Society.
  • Item
    Curled cation structures accelerate the dynamics of ionic liquids
    (Cambridge : RSC Publ., 2021) Rauber, Daniel; Philippi, Frederik; Kuttich, Björn; Becker, Julian; Kraus, Tobias; Hunt, Patricia; Welton, Tom; Hempelmann, Rolf; Kay, Christopher W.M.
    Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids – slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation–anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure–property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure–property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.
  • Item
    Particles as probes for complex plasmas in front of biased surfaces
    (College Park, MD : Institute of Physics Publishing, 2009) Basner, R.; Sigeneger, F.; Loffhagen, D.; Schubert, G.; Fehske, H.; Kersten, H.
    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in terms of the dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc and rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments, we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy
    (Bristol : IOP, 2012) Passig, J.; Irsig, R.; Truong, N.X.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K.H.
    The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 10 14Wcm -2, the delaydependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surfaceplasmon-assisted re-scattering.