Search Results

Now showing 1 - 3 of 3
  • Item
    Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
    (College Park, MD : Institute of Physics Publishing, 2008) Pietzsch, A.; Föhlisch, A.; Beye, M.; Deppe, M.; Hennies, F.; Nagasono, M.; Suljotil, E.; Wurth, W.; Gahl, C.; Dörich, K.; Melnikov, A.
    We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Shell models for Hall effect induced magnetic turbulence
    (College Park, MD : Institute of Physics Publishing, 2007) Frick, P.; Stepanov, R.; Rheinhardt, M.
    The Hall effect occurs in strongly magnetized conductive media and results in non-dissipative currents perpendicular to the electric field. We discuss its influence on the magnetic field dynamics ignoring fluid motion and ambipolar diffusion. The magnetic field evolution can then be basically similar to that of the velocity field in hydrodynamic turbulence resulting in a magnetic turbulence. Shell models for the induction equation with Hall effect are constructed on the basis of the conservation of magnetic energy and helicity in the dissipation-free limit. Numerical simulations of these models indicate that a magnetic energy cascade does occur, but the time behaviour and spatial spectrum of the magnetic field are very different from those of the velocity in shell models of hydrodynamic turbulence. ©IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis
    (Melville, NY : American Inst. of Physics, 2019) Wünsche, Martin; Fuchs, Silvio; Weber, Thomas; Nathanael, Jan; Abel, Johann J.; Reinhard, Julius; Wiesner, Felix; Hübner, Uwe; Skruszewicz, Slawomir J.; Paulus, Gerhard G.; Rödel, Christian
    We present a modular extreme ultraviolet (XUV) spectrometer system optimized for a broad spectral range of 12-41 nm (30-99 eV) with a high spectral resolution of λ/Δλ 784 ± 89. The spectrometer system has several operation modes for (1) XUV beam inspection, (2) angular spectral analysis, and (3) imaging spectroscopy. These options allow for a versatile use in high harmonic spectroscopy and XUV beam analysis. The high performance of the spectrometer is demonstrated using a novel cross-sectional imaging method called XUV coherence tomography. © 2019 Author(s).