Search Results

Now showing 1 - 2 of 2
  • Item
    Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Abdel, Dilara; Vágner, Petr; Fuhrmann, Jürgen; Farrell, Patricio
    From Maxwell--Stefan diffusion and general electrostatics, we derive a drift-diffusion model for charge transport in perovskite solar cells (PSCs) where any ion in the perovskite layer may flexibly be chosen to be mobile or immobile. Unlike other models in the literature, our model is based on quasi Fermi potentials instead of densities. This allows to easily include nonlinear diffusion (based on Fermi--Dirac, Gauss--Fermi or Blakemore statistics for example) as well as limit the ion depletion (via the Fermi--Dirac integral of order-1). The latter will be motivated by a grand-canonical formalism of ideal lattice gas. Furthermore, our model allows to use different statistics for different species. We discuss the thermodynamic equilibrium, electroneutrality as well as generation/recombination. Finally, we present numerical finite volume simulations to underline the importance of limiting ion depletion.
  • Item
    A numerical analysis focused comparison of several finite volume schemes for an unipolar degenerated drift-diffusion model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Cancès, Clément; Chainais-Hillairet, Claire; Fuhrmann, Jürgen; Gaudeul, Benoît
    In this paper, we consider an unipolar degenerated drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is h(c) = log c/1-c. We design four different finite volume schemes based on four different formulations of the fluxes. We provide a stability analysis and existence results for the four schemes. The convergence proof with respect to the discretization parameters is established for two of them. Numerical experiments illustrate the behaviour of the different schemes.