Search Results

Now showing 1 - 10 of 12
  • Item
    Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor
    (London : Nature Publishing Group, 2015) Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V.B.; Büchner, B.; Zhigadlo, N.D.; Batlogg, B.; Yaresko, A.N.; Borisenko, S.V.
    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.
  • Item
    Universal electronic structure of polar oxide hetero-interfaces
    (London : Nature Publishing Group, 2015) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Di Gennaro, Emiliano; Khare, Amit; Di Uccio, Umberto Scotti; Granozio, Fabio Miletto; Krause, Stefan; Koitzsch, Andreas
    The electronic properties of NdGaO3/SrTiO3, LaGaO3/SrTiO3, and LaAlO3/SrTiO3 interfaces, all showing an insulator-to-metal transition as a function of the overlayer-thickness, are addressed in a comparative study based on x-ray absorption, x-ray photoemission and resonant photoemission spectroscopy. The nature of the charge carriers, their concentration and spatial distribution as well as the interface band alignments and the overall interface band diagrams are studied and quantitatively evaluated. The behavior of the three analyzed heterostructures is found to be remarkably similar. The valence band edge of all the three overlayers aligns to that of bulk SrTiO3. The near-interface SrTiO3 layer is affected, at increasing overlayer thickness, by the building-up of a confining potential. This potential bends both the valence and the conduction band downwards. The latter one crossing the Fermi energy in the proximity of the interface and determines the formation of an interfacial band offset growing as a function of thickness. Quite remarkably, but in agreement with previous reports for LaAlO3/SrTiO3, no electric field is detected inside any of the polar overlayers. The essential phenomenology emerging from our findings is discussed on the base of different alternative scenarios regarding the origin of interface carriers and their interaction with an intense photon beam.
  • Item
    Monitoring microbial metabolites using an inductively coupled resonance circuit
    (London : Nature Publishing Group, 2015) Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G.M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys
    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.
  • Item
    Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes
    (London : Nature Publishing Group, 2015) You, Tiangui; Ou, Xin; Niu, Gang; Bärwolf, Florian; Li, Guodong; Du, Nan; Bürger, Danilo; Skorupa, Ilona; Jia, Qi; Yu, Wenjie; Wang, Xi; Schmidt, Oliver G.; Schmidt, Heidemarie
    BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode.
  • Item
    Coincident-site lattice matching during van der Waals epitaxy
    (London : Nature Publishing Group, 2015) Boschker, Jos E.; Galves, Lauren A.; Flissikowski, Timur; Lopes, Joao Marcelo J.; Kiemer, Alexandra K.; Riechert, Henning; Calarco, Raffaella
    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures.
  • Item
    Atomically precise semiconductor-graphene and hBN interfaces by Ge intercalation
    (London : Nature Publishing Group, 2015) Verbitskiy, N.I.; Fedorov, A.V.; Profeta, G.; Stroppa, A.; Petaccia, L.; Senkovskiy, B.; Nefedov, A.; Wöll, C.; Usachov, D.Yu.; Vyalikh, D.V.; Yashina, L.V.; Eliseev, A.A.; Pichler, T.; Grüneis, A.
    The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology.
  • Item
    Distinct itinerant spin-density waves and local-moment antiferromagnetism in an intermetallic ErPd2 Si2 single crystal
    (London : Nature Publishing Group, 2015) Li, Hai-Feng; Cao, Chongde; Wildes, Andrew; Schmidt, Wolfgang; Schmalzl, Karin; Hou, Binyang; Regnault, Louis-Pierre; Zhang, Cong; Meuffels, Paul; Löser, Wolfgang; Roth, Georg
    Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors at Q± = (H ± 0.557(1), 0, L ± 0.150(1)) and QC = (H ± 0.564(1), 0, L), where (H, L) are allowed Miller indices, in an ErPd2Si2 single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The Q± modulation may be attributed to localized 4f moments while the QC correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd2Si2 represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix.
  • Item
    High field superconducting properties of Ba(Fe1-xCox)2As2 thin films
    (London : Nature Publishing Group, 2015) Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard
    The film investigated grew phase-pure and highly textured with in-plane and out-of-plane full width at half maximum, FWHM, of = 0.74° and = 0.9°, Suppl. S1. The sample, however, does contain a large density of ab-planar defects, as revealed by transition electron microscope (TEM) images of focused ion beam (FIB) cuts near the microbridges, Fig. 1. These defects are presumably stacking faults (i.e. missing FeAs layers)20. The reason for this defect formation (also observed on technical substrates)21 is not fully understood. Possible reasons are a partial As loss during deposition22, and relaxation processes in combination with the Fe buffer layer23. Estimating the distance between these intergrowths leads to values varying between 5 and 10 nm. Between the planar defects, an orientation contrast is visible in TEM (inset Fig. 1b), i.e. the brighter crystallites are slightly rotated either around (010) (out-of-plane spread, ) or around (001) (in-plane spread, ) and enclosed by dislocation networks or small-angle GBs. Since the crystallites are sandwiched between planar defects, an in-plane misorientation is most likely. The out-of-plane misorientation, on the other hand, is visible as a slight tilt of the ab-planar defects with respect to each other, especially in the upper part of the sample. No globular or columnar precipitates were found.
  • Item
    Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films
    (London : Nature Publishing Group, 2015) Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben
    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1−xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1−xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1−xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1−xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1−xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C–320 °C) on MgO using PLD. This offers a broad scope of various applications.
  • Item
    Bottom-up assembly of metallic germanium
    (London : Nature Publishing Group, 2015) Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, LaReine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.
    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm−3) low-resistivity (10−4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.