Search Results

Now showing 1 - 3 of 3
  • Item
    Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: Polyester functionalization and characterization
    (Heidelberg : Springer, 2012) Glampedaki, P.; Calvimontes, A.; Dutschk, V.; Warmoeskerken, M.M.C.G.
    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide- co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothing.
  • Item
    Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles
    (Brookfield, Conn. : Society of Plastic Engineers, 2019) Folini, Jenny; Huang, Chao-Hung; Anderson, James C.; Meier, Wolfgang P.; Gaitzsch, Jens
    Responsive and biodegradable nanoparticles are essential for functional drug delivery systems. We herein report the first pH sensitive polyester from radical ring-opening polymerisation of novel amine-bearing cyclic ketene acetals (CKAs). The CKAs were synthesised via an intermediate carbonate and the resulting polyesters showed a pKa around pH 6. Together with an initial application in biodegradable nanoparticles, they open the pathway for a new generation of functional polyesters.
  • Item
    Reconstitution properties of biologically active polymersomes after cryogenic freezing and a freeze-drying process
    (London : RSC Publishing, 2018) Ccorahua, Robert; Moreno, Silvia; Gumz, Hannes; Sahre, Karin; Voit, Brigitte; Appelhans, Dietmar
    Reconstitution of biologically active polymersomes from the frozen or solid state into any fluid state is still a challenging issue for the design of new biological experiments and for the formulation of therapeutic agents. To gain knowledge about the reconstitution of pH-responsive and photo-crosslinked polymersomes, surface-functionalized and enzyme-containing polymersomers were cryogenically frozen (-20 °C) or freeze-dried with inulin as the lyoprotectant (0.1% w/v) and stored for a defined time period. Reconstituting those polymersomes in solution by thawing or a re-dispersing process revealed their original physical properties as well as their function as a pH-switchable enzymatic nanoreactor.