Search Results

Now showing 1 - 3 of 3
  • Item
    Locking free and gradient robust H(div)-conforming HDG methods for linear elasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Fu, Guosheng; Lehrenfeld, Christoph; Linke, Alexander; Streckenbach, Timo
    Robust discretization methods for (nearly-incompressible) linear elasticity are free of volume-locking and gradient-robust. While volume-locking is a well-known problem that can be dealt with in many different discretization approaches, the concept of gradient-robustness for linear elasticity is new. We discuss both aspects and propose novel Hybrid Discontinuous Galerkin (HDG) methods for linear elasticity. The starting point for these methods is a divergence-conforming discretization. As a consequence of its well-behaved Stokes limit the method is gradient-robust and free of volume-locking. To improve computational efficiency, we additionally consider discretizations with relaxed divergence-conformity and a modification which re-enables gradient-robustness, yielding a robust and quasi-optimal discretization also in the sense of HDG superconvergence.
  • Item
    Stable Crank-Nicolson discretisation for incompressible miscible displacement problems of low regularity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Jensen, Max; Müller, Rüdiger
    In this article we study the numerical approximation of incompressible miscible displacement problems with a linearised Crank-Nicolson time discretisation, combined with a mixed finite element and discontinuous Galerkin method. At the heart of the analysis is the proof of convergence under low regularity requirements. Numerical experiments demonstrate that the proposed method exhibits second-order convergence for smooth and robustness for rough problems.
  • Item
    Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Ahmed, Naveed; Matthies, Gunar
    This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamline-upwind Petrov-Galerkin (SUPG) and local projection stabilization (LPS) methods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) methods and continuous Galerkin-Petrov (cGP) methods. Several numerical tests have been performed to assess the accuracy of combinations of spatial and temporal discretization schemes. Furthermore, the dependence of the results on the stabilization parameters of the spatial discretizations are discussed. Finally the long-time behavior of overshoots and undershoots is investigated.