Search Results

Now showing 1 - 3 of 3
  • Item
    Towards smooth (010) ß-Ga2O3films homoepitaxially grown by plasma assisted molecular beam epitaxy: The impact of substrate offcut and metal-to-oxygen flux ratio
    (Bristol : IOP Publ., 2020) Mazzolini, P.; Bierwagen, O.
    Smooth interfaces and surfaces are beneficial for most (opto)electronic devices that are based on thin films and their heterostructures. For example, smoother interfaces in (010) ß-Ga2O3/(AlxGa1-x)2O3 heterostructures, whose roughness is ruled by that of the ß-Ga2O3 layer, can enable higher mobility 2-dimensional electron gases by reducing interface roughness scattering. To this end we experimentally prove that a substrate offcut along the [001] direction allows to obtain smooth ß-Ga2O3 layers in (010)-homoepitaxy under metal-rich deposition conditions. Applying In-mediated metal-exchange catalysis (MEXCAT) in molecular beam epitaxy at high substrate temperatures (Tg = 900 °C) we compare the morphology of layers grown on (010)-oriented substrates having different unintentional offcuts. The layer roughness is generally ruled by (i) the presence of (110)-and bar 110-facets visible as elongated features along the [001] direction (rms < 0.5 nm), and (ii) the presence of trenches (5-10 nm deep) orthogonal to [001]. We show that an unintentional substrate offcut of only ˜ 0.1° almost oriented along the [001] direction suppresses these trenches resulting in a smooth morphology with a roughness exclusively determined by the facets, i.e. rms ˜ 0.2 nm. Since we found the facet-and-trench morphology in layer grown by MBE with and without MEXCAT, we propose that the general growth mechanism for (010)-homoepitaxy is ruled by island growth whose coalescence results in the formation of the trenches. The presence of a substrate offcut in the [001] direction can allow for step-flow growth or island nucleation at the step edges, which prevents the formation of trenches. Moreover, we give experimental evidence for a decreasing surface diffusion length or increasing nucleation density on the substrate surface with decreasing metal-to-oxygen flux ratio. Based on our experimental results we can rule-out step bunching as cause of the trench formation as well as a surfactant-effect of indium during MEXCAT. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Axial GaAs/Ga(As, Bi) nanowire heterostructures
    (Bristol : IOP Publ., 2019) Oliva, Miriam; Gao, Guanhui; Luna, Esperanza; Geelhaar, Lutz; Lewis, Ryan B
    Bi-containing III-V semiconductors constitute an exciting class of metastable compounds with wide-ranging potential optoelectronic and electronic applications. However, the growth of III-V-Bi alloys requires group-III-rich growth conditions, which pose severe challenges for planar growth. In this work, we exploit the naturally-Ga-rich environment present inside the metallic droplet of a self-catalyzed GaAs nanowire (NW) to synthesize metastable GaAs/GaAs1-xBi x axial NW heterostructures with high Bi contents. The axial GaAs1-xBi x segments are realized with molecular beam epitaxy by first enriching only the vapor-liquid-solid (VLS) Ga droplets with Bi, followed by exposing the resulting Ga-Bi droplets to As2 at temperatures ranging from 270 °C to 380 °C to precipitate GaAs1-xBi x only under the NW droplets. Microstructural and elemental characterization reveals the presence of single crystal zincblende GaAs1-xBi x axial NW segments with Bi contents up to (10 ± 2)%. This work illustrates how the unique local growth environment present during the VLS NW growth can be exploited to synthesize heterostructures with metastable compounds. © 2019 IOP Publishing Ltd.
  • Item
    Lattice matched Volmer–Weber growth of Fe3Si on GaAs(001) - the influence of the growth rate
    (Bristol : IOP Publ., 2019) Jenichen, B.; Cheng, Z.; Hanke, M.; Herfort, J.; Trampert, A.
    We investigate the formation of lattice matched single-crystalline Fe3Si/GaAs(001) ferromagnet/semiconductor hybrid structures by Volmer-Weber island growth, starting from the epitaxial growth of isolated Fe3Si islands up to the formation of continuous films as a result of island coalescence. We find coherent defect-free layers exhibiting compositional disorder near the Fe3Si/GaAs - interface for higher growth rates, whereas they are fully ordered for lower growth rates. © 2019 IOP Publishing Ltd.