Search Results

Now showing 1 - 10 of 20
  • Item
    Towards Customizable Chart Visualizations of Tabular Data Using Knowledge Graphs
    (Cham : Springer, 2020) Wiens, Vitalis; Stocker, Markus; Auer, Sören; Ishita, Emi; Pang, Natalie Lee San; Zhou, Lihong
    Scientific articles are typically published as PDF documents, thus rendering the extraction and analysis of results a cumbersome, error-prone, and often manual effort. New initiatives, such as ORKG, focus on transforming the content and results of scientific articles into structured, machine-readable representations using Semantic Web technologies. In this article, we focus on tabular data of scientific articles, which provide an organized and compressed representation of information. However, chart visualizations can additionally facilitate their comprehension. We present an approach that employs a human-in-the-loop paradigm during the data acquisition phase to define additional semantics for tabular data. The additional semantics guide the creation of chart visualizations for meaningful representations of tabular data. Our approach organizes tabular data into different information groups which are analyzed for the selection of suitable visualizations. The set of suitable visualizations serves as a user-driven selection of visual representations. Additionally, customization for visual representations provides the means for facilitating the understanding and sense-making of information.
  • Item
    Survey on Big Data Applications
    (Cham : Springer, 2020) Janev, Valentina; Pujić, Dea; Jelić, Marko; Vidal, Maria-Esther; Janev, Valentina; Graux, Damien; Jabeen, Hajira; Sallinger, Emanuel
    The goal of this chapter is to shed light on different types of big data applications needed in various industries including healthcare, transportation, energy, banking and insurance, digital media and e-commerce, environment, safety and security, telecommunications, and manufacturing. In response to the problems of analyzing large-scale data, different tools, techniques, and technologies have bee developed and are available for experimentation. In our analysis, we focused on literature (review articles) accessible via the Elsevier ScienceDirect service and the Springer Link service from more recent years, mainly from the last two decades. For the selected industries, this chapter also discusses challenges that can be addressed and overcome using the semantic processing approaches and knowledge reasoning approaches discussed in this book.
  • Item
    Dynamic publication formats and collaborative authoring
    (Cham : Springer, 2014) Heller, Lambert; The, Ronald; Bartling, Sönke; Bartling, Sönke; Friesike, Sascha
    While Online Publishing has replaced most traditional printed journals in less than twenty years, today’s Online Publication Formats are still closely bound to the medium of paper. Collaboration is mostly hidden from the readership, and ‘final’ versions of papers are stored in ‘publisher PDF’ files mimicking print. Meanwhile new media formats originating from the web itself bring us new modes of transparent collaboration, feedback, continued refinement, and reusability of (scholarly) works: Wikis, Blogs and Code Repositories, to name a few. This chapter characterizes the potentials of Dynamic Publication Formats and analyzes necessary prerequisites. Selected tools specific to the aims, stages, and functions of Scholarly Publishing are presented. Furthermore, this chapter points out early examples of usage and further development from the field. In doing so, Dynamic Publication Formats are described as (a) a ‘parallel universe’ based on the commodification of (scholarly) media, and (b) as a much needed complement, slowly recognized and incrementally integrated into more efficient and dynamic workflows of production, improvement, and dissemination of scholarly knowledge in general.
  • Item
    Ontology Design for Pharmaceutical Research Outcomes
    (Cham : Springer, 2020) Say, Zeynep; Fathalla, Said; Vahdati, Sahar; Lehmann, Jens; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    The network of scholarly publishing involves generating and exchanging ideas, certifying research, publishing in order to disseminate findings, and preserving outputs. Despite enormous efforts in providing support for each of those steps in scholarly communication, identifying knowledge fragments is still a big challenge. This is due to the heterogeneous nature of the scholarly data and the current paradigm of distribution by publishing (mostly document-based) over journal articles, numerous repositories, and libraries. Therefore, transforming this paradigm to knowledge-based representation is expected to reform the knowledge sharing in the scholarly world. Although many movements have been initiated in recent years, non-technical scientific communities suffer from transforming document-based publishing to knowledge-based publishing. In this paper, we present a model (PharmSci) for scholarly publishing in the pharmaceutical research domain with the goal of facilitating knowledge discovery through effective ontology-based data integration. PharmSci provides machine-interpretable information to the knowledge discovery process. The principles and guidelines of the ontological engineering have been followed. Reasoning-based techniques are also presented in the design of the ontology to improve the quality of targeted tasks for data integration. The developed ontology is evaluated with a validation process and also a quality verification method.
  • Item
    Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings
    (Cham : Springer, 2020) Rivas, Ariam; Grangel-González, Irlán; Collarana, Diego; Lehmann, Jens; Vidal, Maria-Esther; Hartmann, Sven; Küng, Josef; Kotsis, Gabriele; Tjoa, A Min; Khalil, Ismail
    Industry 4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of empowering interoperability in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans∗ family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.
  • Item
    Towards Operational Research Infrastructures with FAIR Data and Services
    (Cham : Springer, 2020) Zhao, Zhiming; Jeffery, Keith; Stocker, Markus; Atkinson, Malcolm; Petzold, Andreas; Zhao, Zhiming; Hellström, Margareta
    Environmental research infrastructures aim to provide scientists with facilities, resources and services to enable scientists to effectively perform advanced research. When addressing societal challenges such as climate change and pollution, scientists usually need data, models and methods from different domains to tackle the complexity of the complete environmental system. Research infrastructures are thus required to enable all data, including services, products, and virtual research environments is FAIR for research communities: Findable, Accessible, Interoperable and Reusable. In this last chapter, we conclude and identify future challenges in research infrastructure operation, user support, interoperability, and future evolution.
  • Item
    Creating a Scholarly Knowledge Graph from Survey Article Tables
    (Cham : Springer, 2020) Oelen, Allard; Stocker, Markus; Auer, Sören; Ishita, Emi; Pang, Natalie Lee San; Zhou, Lihong
    Due to the lack of structure, scholarly knowledge remains hardly accessible for machines. Scholarly knowledge graphs have been proposed as a solution. Creating such a knowledge graph requires manual effort and domain experts, and is therefore time-consuming and cumbersome. In this work, we present a human-in-the-loop methodology used to build a scholarly knowledge graph leveraging literature survey articles. Survey articles often contain manually curated and high-quality tabular information that summarizes findings published in the scientific literature. Consequently, survey articles are an excellent resource for generating a scholarly knowledge graph. The presented methodology consists of five steps, in which tables and references are extracted from PDF articles, tables are formatted and finally ingested into the knowledge graph. To evaluate the methodology, 92 survey articles, containing 160 survey tables, have been imported in the graph. In total, 2626 papers have been added to the knowledge graph using the presented methodology. The results demonstrate the feasibility of our approach, but also indicate that manual effort is required and thus underscore the important role of human experts.
  • Item
    Operational Research Literature as a Use Case for the Open Research Knowledge Graph
    (Cham : Springer, 2020) Runnwerth, Mila; Stocker, Markus; Auer, Sören; Bigatti, Anna Maria; Carette, Jacques; Davenport, James H.; Joswig, Michael; de Wolff, Timo
    The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interoperable, and reusable in a structured manner in accordance with the Linked Open Data paradigm. At the moment, in ORKG papers are described manually, but in the long run the semantic depth of the literature at scale needs automation. Operational Research is a suitable test case for this vision because the mathematical field and, hence, its publication habits are highly structured: A mundane problem is formulated as a mathematical model, solved or approximated numerically, and evaluated systematically. We study the existing literature with respect to the Assembly Line Balancing Problem and derive a semantic description in accordance with the ORKG. Eventually, selected papers are ingested to test the semantic description and refine it further.
  • Item
    Creating and Capturing Artificial Emotions in Autonomous Robots and Software Agents
    (Cham : Springer, 2020) Hoffmann, Claus; Vidal, Maria-Esther; Bielikova, Maria; Mikkonen, Tommi; Pautasso, Cesare
    This paper presents ARTEMIS, a control system for autonomous robots or software agents. ARTEMIS is able to create and capture artificial emotions during interactions with its environment, and we describe the underlying mechanisms for this. The control system also realizes the capturing of knowledge about its past artificial emotions. A specific interpretation of a knowledge graph, called an Agent Knowledge Graph, represents these artificial emotions. For this, we devise a formalism which enriches the traditional factual knowledge in knowledge graphs with the representation of artificial emotions. As proof of concept, we realize a concrete software agent based on the ARTEMIS control system. This software agent acts as a user assistant and executes the user’s orders. The environment of this user assistant consists of autonomous service agents. The execution of user’s orders requires interaction with these autonomous service agents. These interactions lead to artificial emotions within the assistant. The first experiments show that it is possible to realize an autonomous agent with plausible artificial emotions with ARTEMIS and to record these artificial emotions in its Agent Knowledge Graph. In this way, autonomous agents based on ARTEMIS can capture essential knowledge that supports successful planning and decision making in complex dynamic environments and surpass emotionless agents.
  • Item
    Case Study: ENVRI Science Demonstrators with D4Science
    (Cham : Springer, 2020) Candela, Leonardo; Stocker, Markus; Häggström, Ingemar; Enell, Carl-Fredrik; Vitale, Domenico; Papale, Dario; Grenier, Baptiste; Chen, Yin; Obst, Matthias; Zhao, Zhiming; Hellström, Margareta
    Whenever a community of practice starts developing an IT solution for its use case(s) it has to face the issue of carefully selecting “the platform” to use. Such a platform should match the requirements and the overall settings resulting from the specific application context (including legacy technologies and solutions to be integrated and reused, costs of adoption and operation, easiness in acquiring skills and competencies). There is no one-size-fits-all solution that is suitable for all application context, and this is particularly true for scientific communities and their cases because of the wide heterogeneity characterising them. However, there is a large consensus that solutions from scratch are inefficient and services that facilitate the development and maintenance of scientific community-specific solutions do exist. This chapter describes how a set of diverse communities of practice efficiently developed their science demonstrators (on analysing and producing user-defined atmosphere data products, greenhouse gases fluxes, particle formation, mosquito diseases) by leveraging the services offered by the D4Science infrastructure. It shows that the D4Science design decisions aiming at streamlining implementations are effective. The chapter discusses the added value injected in the science demonstrators and resulting from the reuse of D4Science services, especially regarding Open Science practices and overall quality of service.