Search Results

Now showing 1 - 10 of 506
  • Item
    Weak solutions and weak-strong uniqueness for a thermodynamically consistent phase-field model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Lasarzik, Robert; Rocca, Elisabetta; Schimperna, Giulio
    In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy balance is replaced by the total energy inequality complemented with a weak form of the entropy inequality. Moreover, we prove existence of local-in-time strong solutions and, finally, we show weak-strong uniqueness of solutions, meaning that every weak solution coincides with a local strong solution emanating from the same initial data, as long as the latter exists.
  • Item
    Dynamical Gibbs variational principles for irreversible interacting particle systems with applications to attractor properties
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Jahnel, Benedikt; Köppl, Jonas
    We consider irreversible translation-invariant interacting particle systems on the d-dimensional cubic lattice with finite local state space, which admit at least one Gibbs measure as a time-stationary measure. Under some mild degeneracy conditions on the rates and the specification we prove, that zero relative entropy loss of a translation-invariant measure implies, that the measure is Gibbs w.r.t. the same specification as the time-stationary Gibbs measure. As an application, we obtain the attractor property for irreversible interacting particle systems, which says that any weak limit point of any trajectory of translation-invariant measures is a Gibbs measure w.r.t. the same specification as the time-stationary measure. This extends previously known results to fairly general irreversible interacting particle systems.
  • Item
    Wie steuert man einen Kran?
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2016) Altmann, Robert; Heiland, Jan
    Die Steuerung einer Last an einem Kran ist ein technisch und mathematisch schwieriges Problem, da die Bewegung der Last nur indirekt beeinflusst werden kann. Anhand eines Masse-Feder-Systems illustrieren wir diese Schwierigkeiten und zeigen wie man mit einem zum konventionellen Lösungsweg alternativen Optimierungsansatz die auftretenden Komplikationen teilweise umgehen kann.
  • Item
    Extrapolated elliptic regularity and application to the van Roosbroeck system of semiconductor equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Meinlschmidt, Hannes; Rehberg, Joachim
    In this paper we present a general extrapolated elliptic regularity result for second order differential operators in divergence form on fractional Sobolev-type spaces of negative order Xs-1,qD(Ω) for s > 0 small, including mixed boundary conditions and with a fully nonsmooth geometry of Ω and the Dirichlet boundary part D. We expect the result to find applications in the analysis of nonlinear parabolic equations, in particular for quasilinear problems or when treating coupled systems of equations. To demonstrate the usefulness of our result, we give a new proof of local-in-time existence and uniqueness for the van Roosbroeck system for semiconductor devices which is much simpler than already established proofs.
  • Item
    How to gamble with non-stationary X-armed bandits and have no regrets
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Avanesov, Valeriy
    In X-armed bandit problem an agent sequentially interacts with environment which yields a reward based on the vector input the agent provides. The agent's goal is to maximise the sum of these rewards across some number of time steps. The problem and its variations have been a subject of numerous studies, suggesting sub-linear and sometimes optimal strategies. The given paper introduces a new variation of the problem. We consider an environment, which can abruptly change its behaviour an unknown number of times. To that end we propose a novel strategy and prove it attains sub-linear cumulative regret. Moreover, the obtained regret bound matches the best known bound for GP-UCB for a stationary case, and approaches the minimax lower bound in case of highly smooth relation between an action and the corresponding reward. The theoretical result is supported by experimental study.
  • Item
    Semiconductor laser linewidth theory revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Wenzel, Hans; Kantner, Markus; Radziunas, Mindaugas; Bandelow, Uwe
    More and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is therefore of great practical relevance. In this paper, we derive a general expression for the calculation of the spectral linewidth step by step in a self-contained manner. We build on the linewidth theory developed in the 1980s and 1990s but look from a modern perspective, in the sense that we choose as our starting points the time-dependent coupled-wave equations for the forward and backward propagating fields and an expansion of the fields in terms of the stationary longitudinal modes of the open cavity. As a result, we obtain rather general expressions for the longitudinal excess factor of spontaneous emission (K-factor) and the effective Alpha-factor including the effects of nonlinear gain (gain compression) and refractive index (Kerr effect), gain dispersion and longitudinal spatial hole burning in multi-section cavity structures. The effect of linewidth narrowing due to feedback from an external cavity often described by the so-called chirp reduction factor is also automatically included. We propose a new analytical formula for the dependence of the spontaneous emission on the carrier density avoiding the use of the population inversion factor. The presented theoretical framework is applied to a numerical study of a two-section distributed Bragg reflector laser.
  • Item
    Existence and uniqueness of solution for multidimensional parabolic PDAEs arising in semiconductor modeling
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Alì, Giuseppe; Rotundo, Nella
    This paper concerns with a compact network model combined with distributed models for semiconductor devices. For linear RLC networks containing distributed semiconductor devices, we construct a mathematical model that joins the differential-algebraic initial value problem for the electric circuit with multi-dimensional parabolic-elliptic boundary value problems for the devices. We prove an existence and uniqueness result, and the asymptotic behavior of this mixed initial boundary value problem of partial differential-algebraic equations.
  • Item
    On reducing spurious oscillations in discontinuous Galerkin (DG) methods for steady-state convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Frerichs, Derk; John, Volker
    A standard discontinuous Galerkin (DG) finite element method for discretizing steady-state convection-diffusion-reaction equations is known to be stable and to compute sharp layers in the convection-dominated regime, but also to show large spurious oscillations. This paper studies post-processing methods for reducing the spurious oscillations, which replace the DG solution in a vicinity of layers by a constant or linear approximation. Three methods from the literature are considered and several generalizations and modifications are proposed. Numerical studies with the post-processing methods are performed at two-dimensional examples.
  • Item
    Balanced-Viscosity solutions to infinite-dimensional multi-rate systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Mielke, Alexander; Rossi, Riccarda
    We consider generalized gradient systems with rate-independent and rate-dependent dissipation potentials. We provide a general framework for performing a vanishing-viscosity limit leading to the notion of parametrized and true Balanced-Viscosity solutions that include a precise description of the jump behavior developing in this limit. Distinguishing an elastic variable $u$ having a viscous damping with relaxation time $eps^alpha$ and an internal variable $z$ with relaxation time $eps$ we obtain different limits for the three cases $alpha in (0,1)$, $alpha=1$ and $alpha>1$. An application to a delamination problem shows that the theory is general enough to treat nontrivial models in continuum mechanics.
  • Item
    Dynamical phase transitions for flows on finite graphs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Gabrielli, Davide; Renger, D. R. Michiel
    We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flow is given by a variational formulation involving paths of the density and flow. We give sufficient conditions under which the large deviations of a given time averaged flow is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph.