Search Results

Now showing 1 - 10 of 82
  • Item
    Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites
    (Melville, NY : AIP, 2017) Socher, Robert; Krause, Beate; Pötschke, Petra
    The aim of this study was to decrease the electrical percolation threshold of multiwalled carbon nanotubes (MWCNTs) in a polyamide 12 matrix by the use of additives. Different kinds of additives were selected which either interact with the π-system of the MWCNTs (imidazolium based ionic liquid (IL) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)) or improve the MWCNT wettability (cyclic butylene terephthalate, CBT). The composites were melt mixed using a DACA microcompounder. The electrical percolation threshold for PA12/MWCNT without additives, measured on compression molded plates, was found between 2.0 and 2.25 wt%. With all used additives, a significant reduction of the electrical percolation threshold could be achieved. Whereas the addition of IL and CBT resulted in MWCNT percolation at around 1.0 wt%, a slightly higher percolation threshold between 1.0 and 1.5 wt% was found for PTCDA as an additive. Interestingly, the electrical resistivity at higher loadings was decreased by nearly two decades when using CBT and one decade after application of PTCDA, whereas IL did not contribute to lower values in this range. In all cases macrodispersion as assessed by light microscopy was not improved and even worse as compared to non-modified composites. In summary, the results illustrate that these kinds of additives are able to improve the performance of PA12 based MWCNT nanocomposites.
  • Item
    Melt mixed composites of polypropylene with singlewalled carbon nanotubes for thermoelectric applications: Switching from p- to n-type behavior by additive addition
    (Melville, NY : AIP, 2019) Pötschke; Petra; Krause, Beate; Luo, Jinji
    Composites were prepared with polypropylene (PP) as the matrix and singlewalled CNTs (SWCNTs) of the type TUBALL from OCSiAl Ltd. as the conducting component by melt processing in a small-scale twin-screw compounder. In order to switch the typical p-type behavior of such composites from positive Seebeck coefficients (S) into n-type behavior with negative Seebeck coefficients, a non-ionic surfactant polyoxyethylene 20 cetyl ether (Brij58) was used and compared with a PEG additive, which was shown previously to be able to induce such switching. For PP-2 wt% SWCNT composites Brij58 is shown to result in n-type composites. The negative S values (up to −48.2 µV/K) are not as high as in the case of previous results using PEG (−56.6 µV/K). However, due to the more pronounced effect of Brij58 on the electrical conductivity, the achieved power factors are higher and reach a maximum of 0.144 µW/(m·K2) compared to previous 0.078 µW/(m·K2) with PEG. Dispersion improvement depends on the type of SWCNTs obtained by using varied synthesis/treatment conditions. Solution prepared composites of PEG with SWCNTs also have negative S values, indicating the donation of electrons from PEG to the SWCNTs. However, such composites are brittle and not suitable as thermoelectric materials.
  • Item
    Synthesis and Self-Assembly Behavior of Double Ullazine-Based Polycyclic Aromatic Hydrocarbons
    (Stuttgart : Georg Thieme, 2021) Richter, Marcus; Borkowski, Michał; Fu, Yubin; Dmitrieva, Evgenia; Popov, Alexey A.; Ma, Ji; Marszalek, Tomasz; Pisula, Wojciech; Feng, Xinliang
    Polycyclic aromatic azomethine ylides (PAMY, 1) are versatile building blocks for the bottom-up synthesis of nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). Although the chemistry of PAMY was already established few years ago, the cycloaddition of a double PAMY building block has not been reported so far. In this work, we demonstrate the first cycloaddition of a PAMY-dimer (6), which opens the access to three different alkyl ester-substituted N-PAHs with a laterally extended double ullazine scaffold (DU-1, DU-2 and DU-3). Interestingly, the cyclic voltammetry of DU-1-3 exhibited three reversible oxidation waves, which confirmed the electron-rich nature of the double ullazine scaffold. Furthermore, in-situ spectroelectrochemistry study of ethylhexyl ester-substituted DU-3 revealed the formation of different cationic species with new absorption bands up to 1689 nm. Additionally, the influence of the attached substituents on the film formation and supramolecular organization in the thin films were investigated by polarized optical microscopy and grazing incidence wide-angle X-ray scattering.
  • Item
    Comparison of nanotubes produced by fixed bed and aerosol-CVD methods and their electrical percolation behaviour in melt mixed polyamide 6.6 composites
    (Barking : Elsevier, 2010) Krause, Beate; Ritschel, M.; Täschner, C.; Oswald, S.; Gruner, W.; Leonhardt, A.; Pötschke, Petra
    The electrical percolation behaviour of five different kinds of carbon nanotubes (CNTs) synthesised by two CVD techniques was investigated on melt mixed composites based on an insulating polyamide 6.6 matrix. The electrical percolation behaviour was found to be strongly dependent on the properties of CNTs which varied with the synthesis conditions. The lowest electrical percolation threshold (0.04 wt.%) was determined for as grown multi-walled carbon nanotubes without any purification or chemical treatment. Such carbon nanotubes were synthesised by the aerosol method using acetonitrile as ferrocene containing solvent and show relatively low oxygen content near the surface, high aspect ratio, and good dispersability. Similar properties could be found for nanotubes produced by the aerosol method using cyclohexane, whereas CNTs produced by the fixed bed method using different iron contents in the catalyst material showed much higher electrical percolation thresholds between 0.35 and 1.02 wt.%. © 2009 Elsevier Ltd. All rights reserved.
  • Item
    Towards the semantic formalization of science
    (New York City, NY : Association for Computing Machinery, 2020) Fathalla, Said; Auer, Sören; Lange, Christoph
    The past decades have witnessed a huge growth in scholarly information published on the Web, mostly in unstructured or semi-structured formats, which hampers scientific literature exploration and scientometric studies. Past studies on ontologies for structuring scholarly information focused on describing scholarly articles' components, such as document structure, metadata and bibliographies, rather than the scientific work itself. Over the past four years, we have been developing the Science Knowledge Graph Ontologies (SKGO), a set of ontologies for modeling the research findings in various fields of modern science resulting in a knowledge graph. Here, we introduce this ontology suite and discuss the design considerations taken into account during its development. We deem that within the next years, a science knowledge graph is likely to become a crucial component for organizing and exploring scientific work.
  • Item
    Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures
    (Barking : Elsevier, 2013) Pötschke, Petra; Krause, Beate; Buschhorn, Samuel T.; Köpke, Ulf; Müller, Michael T.; Villmow, Tobias; Schulte, Karl
    The paper reports the effect of using of a three roll mill as additional dispersion step after twin-screw melt extrusion of nanocomposites containing thermoplastic polymers and multiwalled carbon nanotubes. The three roll milling technology was adapted to elevated temperatures of up to 180 °C and examples are shown for its use in processing of different pre-compounded thermoplastic polymer composites based on polypropylene, polycaprolactone and ethylene-vinyl acetate. The aim is to enhance the state of dispersion achieved by the previous melt extrusion step. In particular, depending on the state of dispersion before three roll milling and the adapted conditions, like number of runs and gap sizes, a reduction of number and size of remaining primary nanotube agglomerates was found. This was studied using light microscopy. The resulting improvements in mechanical properties were assessed and could be attributed to the improved dispersion. In some cases agglomerate free samples could be achieved after the three roll milling process. © 2012 Elsevier Ltd.
  • Item
    Development of joining methods for highly filled Graphite/PP composite based bipolar plates for fuel cells: Adhesive joining and welding
    (Melville, NY : AIP, 2019) Rzeczkowski, P.; Lucia, M.; Müller, A.; Facklam, M.; Cohnen, A.; Schäfer, P.; Hopmann, C.; Hickmann, T.; Pötschke, Petra; Krause, Beate
    Novel material solutions for bipolar plates in fuel cells require adapted ways of joining and sealing technologies. Safe and life time enduring leak-tight contacts must be achieved by automatic processes using reasonable joint forces. A proper sealing should manage such challenges as good ageing properties, excellent leaktightness, high thermal conductivity and low gas permeability. Hence in this work, adhesive bonding and welding are considered as suitable methods, which can fulfill the requirements mentioned above. Adhesive systems seem to be more easy to apply than conventional sealing (hand layed-up rubber gaskets), e.g. with automatic dispensers. Additionally, the properties of an adhesive joint can be enhanced by a process-specific surface pre-treatment. This work focuses on the characterization of adhesive systems and their joints with highly filled graphite composites. Mechanical properties of the joints were characterized through lap-shear tests. The influence of ageing caused by humidity or acidic solvent at increased temperature on the bond line properties as well as neat adhesive was examined. The thermal conductivities of neat adhesives and through the entire joint were examined. In order to improve above conductivities, roughening, substrate pre-heating, post-curing and various contact pressure weights were applied. Plasma treatment was chosen as surface pre-treatment method for improving substrate's surface energy. An alternative to bonding is plastic welding, which does not require the use of sealants and adhesives. Based on former study of influences of filler content on the welding process using ultrasonic, hot plate or infrared welding, a welding method for joining the graphite compounds was derived.
  • Item
    Development and Implementation of a Guideline for the Combination of Additively Manufactured Joint Assemblies with Wire Actuators made of Shape Memory Alloys
    (Amsterdam [u.a.] : Elsevier, 2023) Löffler, Robin; Tremmel, Stephan; Hornfeck, Rüdiger
    Smart Materials actuators in the form of wires made of shape memory alloys in combination with additively manufactured carrier components are used in a wide variety of prototype developments of innovative joint assemblies. This combination is relevant because of the same manufacturing costs of the additively manufactured components, which are independent of the quantity of parts, the free geometric design possibilities as well as the huge energy density of the aforementioned actuator technology. In particular, the focus is on the possibility of appropriately fitting large wire lengths on a compact part volume while taking into account acceptable force losses. Since there is no design guideline for such joint developments, each is individual, which results in unnecessarily long development times and a higher risk of errors. Based on selected in-house and third-party examples, integration possibilities of shape memory alloy wire actuators in additively manufactured carrier components are analysed and transferred into a universally applicable design guideline. These recommendations are brought into the framework of existing design guidelines of the VDI (Verein Deutscher Ingenieure – Association of German Engineers), namely VDI 2206 and VDI 2221 with extensions for additive manufacturing, for a better usability and integrability into existing processes. Finally, this results in a simplified access to the topic of the combination of additive manufacturing and shape memory alloys and a more efficient realisation of such joint developments.
  • Item
    A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive
    (Oxford : Elsevier Science, 2012) Müller, Michael Thomas; Krause, Beate; Pötschke, Petra
    An additive-assisted one-step melt mixing approach was developed to produce nanocomposites based on linear low density polyethylene (LLDPE) with multiwalled carbon nanotube (MWCNT). The polymer granules, nanotube powder (2 wt% Nanocyl™ NC7000) and 1-10 wt% of the non-ionic additives poly(ethylene glycol) (PEG) or poly(ethylene oxide) (PEO) with molar masses between 100 g/mol and 100,000 g/mol were simply fed together in the hopper of a small-scale DSM Xplore 15 twin-screw microcompounder. The produced MWCNT/LLDPE composites showed excellent MWCNT dispersion and highly improved electrical properties as compared to samples without the additive, whereas the effects depend on the amount and molar mass of the additive. When 7 wt% PEG (2000 g/mol) were used, a reduction of the electrical percolation threshold from 2.5 wt% to 1.5 wt% was achieved. © 2012 Elsevier Ltd. All rights reserved.
  • Item
    Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites
    (Melville, NY : AIP, 2017) Krause, Beate; Cohnen, A.; Pötschke, Petra; Hickmann, T.; Koppler, D.; Proksch, B.; Kersting, T.; Hopmann, C.
    In this study, composites based on polypropylene (PP) and different graphite fillers were melt mixed using small scale microcompounder Xplore DSM15 as well as lab-scale co-rotating twin screw extruder Coperion ZSK26Mc. The measurements of the electrical and thermal conductivity as well as mechanical properties of the composites were performed on pressed plates. It was found that the addition of graphite powders having different particle size distributions leads to different increases of the thermal conductivity. For synthetic graphite, the PP composites filled with TIMCAL Timrex® KS500 reached the highest value of thermal conductivity of 0.52 W/(m·K) at 10 vol% loading, whereas this composite was not electrical conductive. Furthermore, the influence of a styrene-ethylene-butylene-styrene block copolymer (SEBS) based impact modifier on the mechanical properties of PP filled with 80 wt% of different synthetic graphites was investigated. For that the proportion of SEBS in the PP component was varied systematically. The conductivities were influenced by the type of graphite and the content of impact modifier. The results indicate that the impact strength of the composite containing TIMCAL Timrex® KS300-1250 can be increased by approx. 100 % when replacing 50 wt% of the PP component by SEBS.