Search Results

Now showing 1 - 3 of 3
  • Item
    Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms
    (Amsterdam : Elsevier, 2020) Bakalis, Serafim; Valdramidis, Vasilis P.; Argyropoulos, Dimitrios; Ahrne, Lilia; Chen, Jianshe; Cullen, P.J.; Cummins, Enda; Datta, Ashim K.; Emmanouilidis, Christos; Foster, Tim; Fryer, Peter J.; Gouseti, Ourania; Hospido, Almudena; Knoerzer, Kai; LeBail, Alain; Marangoni, Alejandro G.; Rao, Pingfan; Schlüter, Oliver K.; Taoukis, Petros; Xanthakis, Epameinondas; Van Impe, Jan F.M.
    [no abstract available]
  • Item
    Integrating Life Cycle and Impact Assessments to Map Food's Cumulative Environmental Footprint
    (Amsterdam : Elsevier, 2020) Kuempel, Caitlin D.; Frazier, Melanie; Nash, Kirsty L.; Jacobsen, Nis Sand; Williams, David R.; Blanchard, Julia L.; Cottrell, Richard S.; McIntyre, Peter B.; Moran, Daniel; Bouwman, Lex; Froehlich, Halley E.; Gephart, Jessica A.; Metian, Marc; Többen, Johannes; Halpern, Benjamin S.
    Producing food exerts pressures on the environment. Understanding the location and magnitude of food production is key to reducing the impacts of these pressures on nature and people. In this Perspective, Kuempel et al. outline an approach for integrating life cycle assessment and cumulative impact mapping data and methodologies to map the cumulative environmental pressure of food systems. The approach enables quantification of current and potential future environmental pressures, which are needed to reduce the net impact of feeding humanity. © 2020 The AuthorsFeeding a growing, increasingly affluent population while limiting environmental pressures of food production is a central challenge for society. Understanding the location and magnitude of food production is key to addressing this challenge because pressures vary substantially across food production types. Applying data and models from life cycle assessment with the methodologies for mapping cumulative environmental impacts of human activities (hereafter cumulative impact mapping) provides a powerful approach to spatially map the cumulative environmental pressure of food production in a way that is consistent and comprehensive across food types. However, these methodologies have yet to be combined. By synthesizing life cycle assessment and cumulative impact mapping methodologies, we provide guidance for comprehensively and cumulatively mapping the environmental pressures (e.g., greenhouse gas emissions, spatial occupancy, and freshwater use) associated with food production systems. This spatial approach enables quantification of current and potential future environmental pressures, which is needed for decision makers to create more sustainable food policies and practices. © 2020 The Authors
  • Item
    Impact of unseasonable flooding on women's food security and mental health in rural Sylhet, Bangladesh: a longitudinal observational study
    (Amsterdam : Elsevier, 2022) Gepp, Sophie; Waid, Jillian L; Brombierstäudl, Dagmar; Kader, Abdul; Müller-Hauser, Anna A; Wendt, Amanda S; Dame, Juliane; Gabrysch, Sabine
    Background Climate change will lead to more frequent and intensive flooding. In April, 2017, unseasonably early flooding led to the inundation of low-lying cropland before the rice harvest in northeastern Bangladesh. We describe coping strategies and quantify short-term and medium-term effects of flooding events on food security and depressive symptoms of women. Methods This observational study is part of the cluster-randomised Food and Agricultural Approaches to Reducing Malnutrition trial (FAARM; NCT02505711). Women self-reported flooding exposure on behalf of their households when surveyed (approximately 6 months after the event). Remote sensing analysis was used to detect the extent of the flooding. We collected data on household food security at baseline, depressive symptoms 4–5 months before the flooding, and coping strategies immediately after the event. We followed up on these outcome measurements for depressive symptoms and food security for up to 2·5 years after the flooding event. We used multilevel regression adjusting for intervention allocation and pre-flooding measures to quantify the flood's effect on household food security and women's mental health. Findings The FAARM trial included 2700 young women in 96 settlements in rural Sylhet, Bangladesh. 1335 (56%) of 2405 women reported that their household being greatly affected, with many losing a large part of their rice harvest. Borrowing money with interest was the most common coping strategy, with households paying back on average 1·5 times the borrowed amount. Greatly affected households had higher odds of food insecurity, with a decreasing effect with increasing time after the flood (odds ratio: 2·4 [p<0·0001] 0·5 years after; 1·6 [p<0·0001] 2·0 years after]; and 1·3 [p=0·012] 2·5 years after). Women in such households also had 1·45 times higher odds of depression (p=0·0001) 2·5 years after the flooding event. Interpretation The 2017 flooding event negatively affected food security and the mental health of women in rural Sylhet, Bangladesh, and few affected women received formal government support. To reduce the impact of future floods, livelihood adaptations and expansion of financial protection programmes are essential measures to pursue. Funding German Federal Ministry for Education and Research (Berlin, Germany) and UK Department for International Development (London, UK).