Search Results

Now showing 1 - 3 of 3
  • Item
    Super-resolution RESOLFT microscopy of lipid bilayers using a fluorophore-switch dyad
    (Cambridge : RSC, 2020) Frawley, Andrew T.; Wycisk, Virginia; Xiong, Yaoyao; Galiani, Silvia; Sezgin, Erdinc; Urbančič, Iztok; Vargas Jentzsch, Andreas; Leslie, Kathryn G.; Eggeling, Christian; Anderson, Harry L.
    Dyads consisting of a photochromic switch covalently linked to a fluorescent dye allow the emission from the dye to be controlled by reversible photoisomerization of the switch; one form of the switch quenches fluorescence by accepting energy from the dye. Here we investigate the use of dyads of this type for super-resolution imaging of lipid bilayers. Giant unilamellar vesicles stained with the dyads were imaged with about a two-fold resolution-enhancement compared with conventional confocal microscopy. This was achieved by exciting the fluorophore at 594 nm, using a switch activated by violet and red light (405/640 nm). This journal is © The Royal Society of Chemistry.
  • Item
    Time-averaged image projection through a multimode fiber
    (Washington, DC : Soc., 2021) Boonzajer Flaes, Dirk; Štolzová, Hana; Čižmár, Tomáš
    Many disciplines, ranging from lithography to opto-genetics, require high-fidelity image projection. However, not all optical systems can display all types of images with equal ease. Therefore, the image projection quality is dependent on the type of image. In some circumstances, this can lead to a catastrophic loss of intensity or image quality. For complex optical systems, it may not be known in advance which types of images pose a problem. Here we show a new method called Time-Averaged image Projection (TAP), allowing us to mitigate these limitations by taking the entire image projection system into account despite its complexity and building the desired intensity distribution up from multiple illumination patterns. Using a complex optical setup, consisting of a wavefront shaper and a multimode optical fiber illuminated by coherent light, we succeeded to suppress any speckle-related background. Further, we can display independent images at multiple distances simultaneously, and alter the effective sharpness depth through the algorithm. Our results demonstrate that TAP can significantly enhance the image projection quality in multiple ways. We anticipate that our results will greatly complement any application in which the response to light irradiation is relatively slow (one microsecond with current technology) and where high-fidelity spatial distribution of optical power is required.
  • Item
    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
    (London : Nature Publishing Group, 2021) George, A.; Fistul, M.V.; Gruenewald, M.; Kaiser, D.; Lehnert, T.; Mupparapu, R.; Neumann, C.; Hübner, U.; Schaal, M.; Masurkar, N.; Arava, L.M.R.; Staude, I.; Kaiser, U.; Fritz, T.; Turchanin, A.
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.