Search Results

Now showing 1 - 2 of 2
  • Item
    Programming Pulse Width Assessment for Reliable and Low-Energy Endurance Performance in Al:HfO2-Based RRAM Arrays
    (Basel : MDPI AG, 2020) Pérez, Eduardo; Ossorio, Óscar González; Dueñas, Salvador; Castán, Helena; García, Héctor; Wenger, Christian
    A crucial step in order to achieve fast and low-energy switching operations in resistive random access memory (RRAM) memories is the reduction of the programming pulse width. In this study, the incremental step pulse with verify algorithm (ISPVA) was implemented by using different pulse widths between 10 μ s and 50 ns and assessed on Al-doped HfO 2 4 kbit RRAM memory arrays. The switching stability was assessed by means of an endurance test of 1k cycles. Both conductive levels and voltages needed for switching showed a remarkable good behavior along 1k reset/set cycles regardless the programming pulse width implemented. Nevertheless, the distributions of voltages as well as the amount of energy required to carry out the switching operations were definitely affected by the value of the pulse width. In addition, the data retention was evaluated after the endurance analysis by annealing the RRAM devices at 150 °C along 100 h. Just an almost negligible increase on the rate of degradation of about 1 μ A at the end of the 100 h of annealing was reported between those samples programmed by employing a pulse width of 10 μ s and those employing 50 ns. Finally, an endurance performance of 200k cycles without any degradation was achieved on 128 RRAM devices by using programming pulses of 100 ns width.
  • Item
    Toward Reliable Multi-Level Operation in RRAM Arrays: Improving Post-Algorithm Stability and Assessing Endurance/Data Retention
    (Piscataway : Institute of Electrical and Electronics Engineers Inc., 2019) Perez, E.; Zambelli, C.; Mahadevaiah, M.K.; Olivo, P.; Wenger, C.
    Achieving a reliable multi-level operation in resistive random access memory (RRAM) arrays is currently a challenging task due to several threats like the post-algorithm instability occurring after the levels placement, the limited endurance, and the poor data retention capabilities at high temperature. In this paper, we introduced a multi-level variation of the state-of-the-art incremental step pulse with verify algorithm (M-ISPVA) to improve the stability of the low resistive state levels. This algorithm introduces for the first time the proper combination of current compliance control and program/verify paradigms. The validation of the algorithm for forming and set operations has been performed on 4-kbit RRAM arrays. In addition, we assessed the endurance and the high temperature multi-level retention capabilities after the algorithm application proving a 1 k switching cycles stability and a ten years retention target with temperatures below 100 °C.