Search Results

Now showing 1 - 9 of 9
  • Item
    Smooth attractors for strongly damped wave equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Pata, Vittorino; Zelik, Sergey
    This paper is concerned with the semilinear strongly damped wave equation ptt u-Delta pt u-Delta u+varphi(u)=f. The existence of compact global attractors of optimal regularity is proved for nonlinearities phi of critical and supercritical growth.
  • Item
    Resolvent estimates in W-1,p related to strongly coupled linear parabolic systems with coupled nonsmooth capacities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Glitzky, Annegret; Hünlich, Rolf
    We investigate linear parabolic systems with coupled nonsmooth capacities and mixed boundary conditions. We prove generalized resolvent estimates in W-1,p spaces. The method is an appropriate modification of a technique introduced by Agmon to obtain Lp estimates for resolvents of elliptic differential operators in the case of smooth boundary conditions. Moreover, we establish an existence and uniqueness result.
  • Item
    Global regularity and probabilistic schemes for free boundary surfaces of multivariate American derivatives and their Greeks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Kampen, Jörg
    In a rather general setting of multivariate stochastic volatility market models we derive global iterative probabilistic schemes for computing the free boundary and its Greeks for a generic class of American derivative models using front-fixing methods. Establishment of convergence is closely linked to a proof of global regularity of the free boundary surface.
  • Item
    On fractional elliptic equations in Lipschitz sets and epigraphs: Regularity, monotonicity and rigidity results
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Dipierro, Serena; Soave, Nicola; Valdinoci, Enrico
    We consider a nonlocal equation set in an unbounded domain with the epigraph property. We prove symmetry, monotonicity and rigidity results. In particular, we deal with halfspaces, coercive epigraphs and epigraphs that are flat at infinity. These results can be seen as the nonlocal counterpart of the celebrated article [4].
  • Item
    On a nonlocal Cahn-Hilliard equation with a reaction term
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Melchionna, Stefano; Rocca, Elisabetta
    We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn- Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in u reaction term g(x, t, u).
  • Item
    A new type of identification problems: Optimizing the fractional order in a nonlocal evolution equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Sprekels, Jürgen; Valdinoci, Enrico
    In this paper, we consider a rather general linear evolution equation of fractional type, namely a diffusion type problem in which the diffusion operator is the sth power of a positive definite operator having a discrete spectrum in R+. We prove existence, uniqueness and differentiability properties with respect to the fractional parameter s. These results are then employed to derive existence as well as first-order necessary and second-order sufficient optimality conditions for a minimization problem, which is inspired by considerations in mathematical biology. In this problem, the fractional parameter s serves as the control parameter that needs to be chosen in such a way as to minimize a given cost functional. This problem constitutes a new class of identification problems: while usually in identification problems the type of the differential operator is prescribed and one or several of its coefficient functions need to be identified, in the present case one has to determine the type of the differential operator itself. This problem exhibits the inherent analytical difficulty that with changing fractional parameter s also the domain of definition, and thus the underlying function space, of the fractional operator changes.
  • Item
    A distributed control problem for a fractional tumor growth model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three selfadjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn--Hilliard type phase field system modeling tumor growth that goes back to Hawkins-Daarud et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3--24.) The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in the recent work Adv. Math. Sci. Appl. 28 (2019), 343--375 by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type.
  • Item
    Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Patterson, Robert I.A.
    Well posedness is established for a family of equations modelling particle populations undergoing delocalised coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are allowed while the spatial domain is a bounded region of d-dimensional space for which every point lies on exactly one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach space of bounded measures on particle position and type space. A local Lipschitz property is established in total variation norm for the propagators (generalised semi-groups) associated with the problem and used to construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension strong differentiability is established even for coagulation parameters with a particular bounded variation structure in space. This one dimensional extension establishes the convergence of the simulation processes studied in [Patterson, textitStoch. Anal. Appl. 31, 2013] to a unique and differentiable limit.
  • Item
    Regularity and uniqueness in quasilinear parabolic systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Krejčí, Pavel; Panizzi, Lucia
    Inspired by a problem in steel metallurgy, we prove the existence, regularity, uniqueness, and continuous data dependence of solutions to a coupled parabolic system in a smooth bounded 3D domain, with nonlinear and nonhomogeneous boundary conditions. The nonlinear coupling takes place in the diffusion coefficient. The proofs are based on anisotropic estimates in tangential and normal directions, and on a refined variant of the Gronwall lemma.